试论高中数学概念的教学

试论高中数学概念的教学

ID:23316581

大小:104.50 KB

页数:5页

时间:2018-11-06

试论高中数学概念的教学_第1页
试论高中数学概念的教学_第2页
试论高中数学概念的教学_第3页
试论高中数学概念的教学_第4页
试论高中数学概念的教学_第5页
资源描述:

《试论高中数学概念的教学》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、试论高中数学概念的教学  数学概念是数学命题、数学推理的基础成分。在数学概念教学中,要重视概念形成与概念同化相结合;创设学习数学概念的情境,利用概念的引入明确学习的目的性,调动学生的学习主动性与积极性;发展学生的抽象概括能力,实现从对数学对象的感性认识到理性认识的飞跃,形成数学概念;剖析巩固概念,深化概念的理解,感受数学文化。  数学概念概念形成概念同化数学是一门具有高度抽象性、严密逻辑性、广泛应用性的学科。数学概念是反映现实世界空间形式和数量关系本质属性的思维形式,是数学知识体系的基石,是理解和掌握数学理论和方法的基础。  数学概念教学的目的,是帮助学生建立数学概念、理解

2、数学概念、进而运用数学概念,并在这个过程中学习数学的方法、体会数学的思想、感受数学文化。数学概念因客观现实的或数学自身发展的需要而产生。它是数学命题、数学推理的基础成分。学生学习数学概念就意味着学习、掌握一类数学对象的本质属性。正确理解数学概念,是学习和掌握数学知识的前提。学生学习数学所碰见的诸多困难,大部分是由于没有很好掌握相关数学概念所造成的。因此,要重视数学概念的教学,本文就针对这个问题来作一些探讨。  一、概念形成与概念同化相结合5  从教育心理学角度看,学生获得概念的基本方式有两种:一是概念形成,二是概念同化。  概念形成是指在教学条件下,从大量具体例子出发,从学

3、生实际经验的肯定例证中,以归纳的方法概括出一类事物的本质属性。而学生学习直接用定义形式陈述的概念时,他们就主动地与其认知结构中原有的有关概念相互联系、相互作用,并领会新概念的本质属性,从而获得新概念,这种获得概念的方式叫做概念同化。概念形成主要依靠的是对具体事物的抽象,更接近于人类自发形成概念的方式,而概念同化则主要靠学生对经验的概括及新旧知识的联系,是在主体达到一定背景知识和思维能力后掌握概念的主要方式。当学生思维水平与知识经验达不到概念同化的要求时,采用概念形成的方式比较多,效果也比较好。但是如果教师仅用概念形成方式,那么教学有可能落在学生思维发展之后,不利于学生思维能

4、力的发展,也提不起学生的学习兴趣。反之,一味地用概念同化也是行不通的,如碰到较难理解的或新内容开始时的一些概念,若此时还采用概念同化的方式,教学就可能超过了学生的知识经验与思维水平,从而使学生难以理解概念的内涵和外延。这时若采用概念形成的方式,反而会收到更好的效果。由此,在数学概念的实际学习过程中,概念形成与概念同化这两种方式往往是结合使用的,这样既符合学生学习概念时由具体到抽象的认识规律,掌握形式的数学概念背后的事实,又能使学生在有限的时间内较快地理解概念所反映的事物的本质属性,掌握更多的数学概念,提高学习效率。  二、创设学习数学概念的情境,利用概念引入明确学习的目的性

5、,调动学生的学习主动性与积极性5  概念的引入是使学生了解建立概念的必要性,明确学习的目的性,对所学数学概念形成初步的感性认识,从而调动学生学习的主动性、积极性,使学生具有强烈的求知欲望,迫不及待地参与概念的建立活动。这是学生能否学好概念的关键一步。  1.通过对现实材料的分析抽象引入概念,使学生获得丰富的和切合实际的感性材料。引导学生从分析日常生活和生产实际中的实例入手,通过观察有关的实物、图示、模型,在形成充分感性认识的基础上引入概念。例如,通过观察一系列特殊函数图象的“周而复始”的特征,引入函数的周期的概念。  2.通过数学自身发展的内在需要引入概念。数学自身发展的内

6、在需要,既是推动数学发展的动力之一,也是调动学生学习积极性,激发其内在需求的重要素材之一。通过揭示数学自身发展过程中的矛盾、问题,打破学生的原有认知结构,再引导学生探索化解矛盾和解决问题的途径,从而引入数学概念。例如,由方程x2+1=0没有实数解的问题引入复数的概念。  3.通过类比引入概念。通过类比能使相比较的客体的本质更加明确,更能防止知识间的混淆与割离。例如,等比数列可类比等差数列引入,双曲线可类比椭圆引入。  三、发展学生的抽象概括能力,实现从对数学对象的感性认识到理性认识的飞跃5  学生要真正形成数学概念,必须实现从对数学对象的具体的感性认识到数学对象的抽象的理性

7、认识的飞跃。这个过程需要经历一个从片面到全面,从模糊到清晰,从表象联系到实质联系的复杂的思维过程,绝不可能一步到位。因此,在教学过程中,教师应引导学生进行观察、分析、综合、探索、猜想、创造,决定取舍,形成概括,让学生在交流中、反思中逐步实现对数学对象的感性认识到理性认识的过渡,从而形成概念。  1.采用恰当的方法使本质属性明显一些,使学生区分本质属性与非本质属性,从而有利于学生抽象概括。例如,对于棱锥的高,有的学生认为棱锥的顶点在它底面的射影一定在底面的多边形内才有高,把非本质属性(顶点在底面的射影在底面多边形内、

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。