第五章-相交线与平行线知识点整理

第五章-相交线与平行线知识点整理

ID:23244669

大小:149.50 KB

页数:7页

时间:2018-11-06

第五章-相交线与平行线知识点整理_第1页
第五章-相交线与平行线知识点整理_第2页
第五章-相交线与平行线知识点整理_第3页
第五章-相交线与平行线知识点整理_第4页
第五章-相交线与平行线知识点整理_第5页
资源描述:

《第五章-相交线与平行线知识点整理》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、关键词:相交线平行线知识点整理相交线与平行线知识点整理摘要:注意点:⑴对顶角是成对出现的,对顶角是具有特殊位置关系的两个角;⑵如果是对顶角,那么一定有;反之如果,那么不一定是对顶角,⑶如果互为邻补角,则一定有;反之如果,则不一定是邻补角。⑶两直线相交形成的四个角中,每一个角的邻补角有两个,而对顶角只有一个。5.1相交线1、邻补角与对顶角两直线相交所成的四个角中存在几种不同关系的角,它们的概念及性质如下表:图形顶点边的关系大小关系对顶角12∠1与∠2有公共顶点∠1的两边与∠2的两边互为反向延长线对顶角相等即∠1=∠2邻补角43∠3与∠4有公共顶点∠3与∠4有一条边公共,另一边互为反向延

2、长线。∠3+∠4=180°注意点:⑴对顶角是成对出现的,对顶角是具有特殊位置关系的两个角;⑵如果∠α与∠β是对顶角,那么一定有∠α=∠β;反之如果∠α=∠β,那么∠α与∠β不一定是对顶角⑶如果∠α与∠β互为邻补角,则一定有∠α+∠β=180°;反之如果∠α+∠β=180°,则∠α与∠β不一定是邻补角。⑶两直线相交形成的四个角中,每一个角的邻补角有两个,而对顶角只有一个。2、垂线⑴定义,当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中的一条直线叫做另一条直线的垂线,它们的交点叫做垂足。ABCDO符号语言记作:如图所示:AB⊥CD,垂足为O⑵垂线性质1:过一点

3、有且只有一条直线与已知直线垂直(与平行公理相比较记)⑶第7页共7页垂线性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。简称:垂线段最短。3、垂线的画法:⑴过直线上一点画已知直线的垂线;⑵过直线外一点画已知直线的垂线。注意:①画一条线段或射线的垂线,就是画它们所在直线的垂线;②过一点作线段的垂线,垂足可在线段上,也可以在线段的延长线上。画法:⑴一靠:用三角尺一条直角边靠在已知直线上,⑵二移:移动三角尺使一点落在它的另一边直角边上,⑶三画:沿着这条直角边画线,不要画成给人的印象是线段的线。4、点到直线的距离直线外一点到这条直线的垂线段的长度,叫做点到直线的距离记得时候应该结合

4、图形进行记忆。PABO如图,PO⊥AB,同P到直线AB的距离是PO的长。PO是垂线段。PO是点P到直线AB所有线段中最短的一条。现实生活中开沟引水,牵牛喝水都是“垂线段最短”性质的应用。5、如何理解“垂线”、“垂线段”、“两点间距离”、“点到直线的距离”这些相近而又相异的概念分析它们的联系与区别⑴垂线与垂线段区别:垂线是一条直线,不可度量长度;垂线段是一条线段,可以度量长度。联系:具有垂直于已知直线的共同特征。(垂直的性质)⑵两点间距离与点到直线的距离区别:两点间的距离是点与点之间,点到直线的距离是点与直线之间。联系:都是线段的长度;点到直线的距离是特殊的两点(即已知点与垂足)间距离

5、。⑶线段与距离距离是线段的长度,是一个量;线段是一种图形,它们之间不能等同。5.2平行线1、平行线的概念:在同一平面内,不相交的两条直线叫做平行线,直线与直线互相平行,记作∥。2、两条直线的位置关系在同一平面内,两条直线的位置关系只有两种:⑴相交;⑵平行。第7页共7页因此当我们得知在同一平面内两直线不相交时,就可以肯定它们平行;反过来也一样(这里,我们把重合的两直线看成一条直线)判断同一平面内两直线的位置关系时,可以根据它们的公共点的个数来确定:①有且只有一个公共点,两直线相交;②无公共点,则两直线平行;③两个或两个以上公共点,则两直线重合(因为两点确定一条直线)3、平行公理――平行

6、线的存在性与惟一性经过直线外一点,有且只有一条直线与这条直线平行4、平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行                              如左图所示,∵∥,∥                  ∴∥            注意符号语言书写,前提条件是两直线都平行于第三条直线,才会结论,这两条直线都平行。5、三线八角12345678 两条直线被第三条直线所截形成八个角,它们构成了同位角、内错角与同旁内角。 如图,直线被直线所截 ①∠1与∠5在截线的同侧,同在被截直线的上方,叫做同位角(位置相同) ②∠5与∠3在截线的两旁(交

7、错),在被截直线之间(内),叫做内错角(位置在内且交错) ③∠5与∠4在截线的同侧,在被截直线之间(内),叫做同旁内角。 ④三线八角也可以成模型中看出。同位角是“A”型;内错角是“Z”型;同旁内角是“U”型。6、如何判别三线八角 判别同位角、内错角或同旁内角的关键是找到构成这两个角的“三线”,有时需要将有关的部分“抽出”或把无关的线略去不看,有时又需要把图形补全。6BAD2345789FEC 例如:1 如图,判断下列各对角的位置关系:⑴∠1与∠2;⑵∠1与

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。