2003年数学二试题解析

2003年数学二试题解析

ID:23061274

大小:661.50 KB

页数:14页

时间:2018-11-03

2003年数学二试题解析_第1页
2003年数学二试题解析_第2页
2003年数学二试题解析_第3页
2003年数学二试题解析_第4页
2003年数学二试题解析_第5页
资源描述:

《2003年数学二试题解析》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、2003年考研数学(二)试题评注一、填空题(本题共6小题,每小题4分,满分24分.把答案填在题中横线上)(1)若时,与是等价无穷小,则a=-4.【分析】根据等价无穷小量的定义,相当于已知,反过来求a.注意在计算过程中应尽可能地应用无穷小量的等价代换进行化简.【详解】当时,,.于是,根据题设有,故a=-4.(2)设函数y=f(x)由方程所确定,则曲线y=f(x)在点(1,1)处的切线方程是x-y=0.【分析】先求出在点(1,1)处的导数,然后利用点斜式写出切线方程即可.【详解】等式两边直接对x求导,得,将x=1,y=1代入上式,有故过点(1,1)处的切线方程为,即【评注】本题

2、属常规题型,综合考查了隐函数求导与求切线方程两个知识点.(3)的麦克劳林公式中项的系数是.【分析】本题相当于先求y=f(x)在点x=0处的n阶导数值,则麦克劳林公式中项的系数是【详解】因为,,,于是有,故麦克劳林公式中项的系数是【评注】本题属常规题型,在一般教材中都可找到答案.(4)设曲线的极坐标方程为,则该曲线上相应于从0变到的一段弧与极轴所围成的图形的面积为.【分析】利用极坐标下的面积计算公式即可.【详解】所求面积为14=.【评注】本题考查极坐标下平面图形的面积计算,也可化为参数方程求面积,但计算过程比较复杂.(5)设为3维列向量,是的转置.若,则=3.【分析】本题的关

3、键是矩阵的秩为1,必可分解为一列乘一行的形式,而行向量一般可选第一行(或任一非零行),列向量的元素则为各行与选定行的倍数构成.【详解】由=,知,于是【评注】一般地,若n阶矩阵A的秩为1,则必有(6)设三阶方阵A,B满足,其中E为三阶单位矩阵,若,则.【分析】先化简分解出矩阵B,再取行列式即可.【详解】由知,,即,易知矩阵A+E可逆,于是有再两边取行列式,得,因为,所以.【评注】本题属基本题型,综合考查了矩阵运算与方阵的行列式,此类问题一般都应先化简再计算.二、选择题(本题共6小题,每小题4分,满分24分.每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后

4、的括号内)(1)设均为非负数列,且,,,则必有(A)对任意n成立.(B)对任意n成立.14(C)极限不存在.(D)极限不存在.[D]【分析】本题考查极限概念,极限值与数列前面有限项的大小无关,可立即排除(A),(B);而极限是型未定式,可能存在也可能不存在,举反例说明即可;极限属型,必为无穷大量,即不存在.【详解】用举反例法,取,,,则可立即排除(A),(B),(C),因此正确选项为(D).【评注】对于不便直接证明的问题,经常可考虑用反例,通过排除法找到正确选项.(2)设,则极限等于(A).(B).(C).(D).[B]【分析】先用换元法计算积分,再求极限.【详解】因为==

5、,可见=【评注】本题属常规题型,综合考查了定积分计算与求数列的极限两个知识点,但定积分和数列极限的计算均是最基础的问题,一般教材中均可找到其计算方法.(3)已知是微分方程的解,则的表达式为(A)(B)(C)(D)[A]【分析】将代入微分方程,再令的中间变量为u,求出的表达式,进而可计算出.【详解】将代入微分方程,得,即.令lnx=u,有,故=应选(A).14【评注】本题巧妙地将微分方程的解与求函数关系结合起来,具有一定的综合性,但问题本身并不复杂,只要仔细计算应该可以找到正确选项.(4)设函数f(x)在内连续,其导函数的图形如图所示,则f(x)有(A)一个极小值点和两个极大

6、值点.(B)两个极小值点和一个极大值点.(C)两个极小值点和两个极大值点.(D)三个极小值点和一个极大值点.[C]yOx【分析】答案与极值点个数有关,而可能的极值点应是导数为零或导数不存在的点,共4个,是极大值点还是极小值可进一步由取极值的第一或第二充分条件判定.【详解】根据导函数的图形可知,一阶导数为零的点有3个,而x=0则是导数不存在的点.三个一阶导数为零的点左右两侧导数符号不一致,必为极值点,且两个极小值点,一个极大值点;在x=0左侧一阶导数为正,右侧一阶导数为负,可见x=0为极大值点,故f(x)共有两个极小值点和两个极大值点,应选(C).【评注】本题属新题型,类似考

7、题2001年数学一、二中曾出现过,当时考查的是已知f(x)的图象去推导的图象,本题是其逆问题.(5)设,,则(A)(B)(C)(D)[B]【分析】直接计算是困难的,可应用不等式tanx>x,x>0.【详解】因为当x>0时,有tanx>x,于是,,从而有,,可见有且,可排除(A),(C),(D),故应选(B).【评注】本题没有必要去证明,因为用排除法,(A),(C),(D)均不正确,剩下的(B)一定为正确选项.(6)设向量组I:可由向量组II:线性表示,则(A)当时,向量组II必线性相关.(B)当时,向量组II必线性

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。