欢迎来到天天文库
浏览记录
ID:22987322
大小:125.00 KB
页数:33页
时间:2018-11-02
《adf检验中滞后长度的选择——基于arima(0》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、ADF检验中滞后长度的选择——基于ARIMA(0【摘要】在进行ADF检验时如何确定一个最优的滞后长度一直是研究者们关注的问题。最近的研究表明,不同的滞后长度选择方法对ADF检验的统计推断影响很大。本文在已有研究的基础上,模拟了更为一般的ARIMA(0,1,q)过程,分析了在不同的数据生成过程、检验式以及样本容量下,各种滞后长度选择方法对ADF检验功效和实际检验水平的影响,最后认为修正的信息准则通常具有较合理的实际检验水平,而从一般到特殊法具有更为稳健的ADF检验性质。关键词ADF检验滞后长度信息准则修正的信息准则从一般到特殊法Abstract:Theoptimallaglengthin
2、estimatingAugmentedDickey-Fullerstatisticshavebeenconcentratedonforyears.PreviousresearchindicatedthatdifferentleglengthselectionmodelsaffectalotonthestatisticalinferenceofADFtest.Basedonalltheresearchesavailable,thispapersimulatesamoregeneralARIMA(0,1,q)processandanalyzestheinfluenceoflaglength
3、selectioncriterionstothesizeandpoplesizes.Finally,itisprovedthattheModifiedInformationCriteriaalorepropersizeandtheGeneraltoSpecialCriteriahasmorerobustpropertiesinADFtest.KeyationCriteriaModifiedInformationCriteriaGeneraltoSpecific一、引言随着时间序列非平稳问题的提出,单位根检验目前已经成为宏观数据建模前首先要进行的工作。为此,Dickey和Fuller(1
4、979,1981)[1]提出了著名的ADF检验,并推导了当时间序列yt是ARIMA(p,1,0)过程且满足检验式中滞后差分项长度k≥p时ADF检验统计量的极限分布。然而,在实际运用ADF检验时,真实的p是不知道的,因此需要研究者自己确定k。总的来说滞后长度的选择方法主要分为两类。一类是经验法(ruleofthumb)。这种方法是研究者任意选择k,或将k表示为样本容量的函数。另外一类就是根据数据来选择k。这种方法主要有Akaike(1973)信息准则(AkaikeInformationCriteria,以下简写为AIC)、SchationCriteria,以下简写为SIC)、Hannan
5、和Quinn(1979)信息准则(HannanandQuinnInformationCriteria,以下简写为HQIC)、从一般到特殊法则(GeneraltoSpecialCriteria,以下简写为GSC)、从特殊到一般法则(SpecialtoGeneralCriteria,以下简写为SGC)等。此外,在后来的研究中,A(p,1,0)过程时,ADF统计量服从DF分布应满足的假设条件。并讨论了不同滞后长度选择准则对ADF统计量极限分布的影响。他认为当运用AIC、SIC、HQIC以及G678910SC确定滞后长度时,满足上述条件,因此ADF统计量仍服从标准DF分布,而运用SGC时不能满
6、足上述条件,从而ADF统计量的极限分布发生变化,不再服从标准DF分布。最后对于不同的ARIMA(p,1,0)过程,模拟了基于各种准则的ADF检验功效与实际检验水平。此外,随着研究的不断深入,学者们又从一些新的角度对滞后长度选择的问题进行了探讨。比如Ng和Perron(2001)将Elliott、Rothenberg、和Stock(1996)[3]以及Dufour和King(1991)[4]提出的局部GLS退势法与Perron和Ng(1996)[5]提出的修正的单位根检验统计量相结合,提出了一系列MGLS统计量来检验单位根。在这种检验中,他们首度运用了一系列修正的信息准则(Modifie
7、dInformationCriteria,以下简写为MIC)来确定滞后长度,并给出了其局部渐近性质。MIC与一般信息准则的本质区别就在于它考虑到检验式中一阶滞后项参数估计量的偏差与滞后长度是高度相关的,进而通过加入一个包含一阶滞后项参数估计量的修正项对信息准则拟和不足的问题进行了一定的校正。Ng和Perron(2005)又重点探讨了在运用各种信息准则时,可用观测值个数(即调整的样本容量)、计算均方误差时的自由度、以及计算惩罚因子(penalty
此文档下载收益归作者所有