追求数学课堂教学的真谛

追求数学课堂教学的真谛

ID:22802506

大小:66.12 KB

页数:5页

时间:2018-10-31

追求数学课堂教学的真谛_第1页
追求数学课堂教学的真谛_第2页
追求数学课堂教学的真谛_第3页
追求数学课堂教学的真谛_第4页
追求数学课堂教学的真谛_第5页
资源描述:

《追求数学课堂教学的真谛》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、追求数学课堂教学的真谛数学课堂教学的真谛是什么?作为一名长期从事在一线的数学教师来说,这是一直萦绕在我脑海中的问题。课堂教学是教学工作中一个最重要的环节,为了打造有效课堂,我们往往是根据教学目标和内容,精心设计教学过程,那么这种教学设计的基础是什么?我认为第一应该尊重学生的主体地位,教师起着引导的作用,第二培养学生独立思考的习惯,第三引导学生主动探索,具有创新精神。但是实际的课堂情况是多变的,如果从不同的角度看,呈现在我们眼前的将是不同的场景。有位专家说过从社会学角度来看,课堂呈现的是师生交往、生生交往,从心理学角度来看,所呈现的又是教师与学生的心里

2、不断产生冲突又不断进行调节适应的过程,从文化学的角度来看,课堂又是另外一幅画面,以教师为代表的成人文化和以学生为代表的儿童文化不断整合。正因为课堂是个动态的过程,所以如果是按照事先备好的教案一步一步进行,不因为所面对的班级不同、学生不同而进行调整思路,那么只能是死板的教学,所以短短的40分钟实际是在挑战教师的教育机智。回想自己在刚刚踏上三尺讲台时,每节课都备得认认真真,甚至连每一句话都背得滚瓜烂熟,可是在真正上课时,发现学生的思路和自己的不一样,立马慌了神,经过千回百转,终于又把学生引到了自己预先设计好的路子上。在教学过程中,经常在思考下一步该干什么

3、,而很少站在学生的角度去思考,把自己的教学愿望强加给学生,没有留给学生足够的思考时间,也没有让学生自己去钻研、领悟、感受,用自己的教代替了学生的想。在以后不断的摸索中以及学生的建议下,才逐渐明白了应该怎样上课,特别是看了肖川博士的一篇文章更是深受启发。他这样写道:当学生茫无头绪时,我能否给他们以启发?当学生泄气时,我能否唤起他们的自信?我能否从学生的眼中读出他们的想法?我能否听出学生回答中的潜力?我能否让学生在课堂上“柳暗花明又一村”?……由此我们是否应该对自己经常追问,这节课我的目标实现了吗?学生有没有心领神会的表现?学生们合作的效果如何?某个环节

4、我为什么要这样处理?换个方式会怎样,学生会不会接受的更好?我关注到每个学生了吗?我融入到课堂中了吗?我是在和学生一起成长吗?在许多老教师的引领下,经过摸爬滚打,我逐渐形成了自己的教学模式:一、重中之重,当然还是要备好课,备教师,备学生,精心设计教学内容、教学方法、教学顺序例如,九年级上册的第十四章和第十五章,我们经过讨论,认为先学整式的乘法比较好,因为本章的主要内容是整式的乘除运算、乘法公式以及因式分解,这些知识是以后学习分适和根式运算、函数知识的基础,同时也是学习物理、化学等学科及其他科学技术不可或缺的数学工具,特别是和物理上的一些知识有密切关联,

5、所以把顺序调了过来。在课堂上要保证练习的分量和质量,每个题都经过推敲,以保证课堂教学的紧节奏、大容量、练习精、效率高。二、注意指导学生学习数学的方法,培养良好的学习习惯,提高学习效率例如,在本次期中质量检测中,学生普遍感觉题目难度大,但是如果在平时训练中注意引导,养成良好的解题习惯,解题不仅要注重结果,还要注重过程,更要注重反思,及时总结自己的解题心得,探索解题规律,成为一个真正会学习的人,取得好成绩也是不言而喻的。三、引导学生积极参与到数学学习的全过程中去,让学生看到老师真正的思维过程是怎样的也就是说要把教学作为一个过程来进行,不能作为结果来进行,

6、应该把知识发生发展的过程呈现给学生,学生想知道的是教师的思维过程,而不是已知的标准结果,这才符合教学本质。这样学生才能在参与中获知,在参与中提高数学素质。四、充分利用现代化的科技手段,让学生接受知识更直观些、更具体些例如在讲解轴对称图形时,如果仅凭单纯的讲授,会让学生感觉乏味无趣,但是如果借助于多媒体的演示,不仅让学生看的更明白,而且会让学生领略到数学之美无处不在。五、注重“一题多解”和“变式”训练在“多解”中培养学生思维的灵活性,学会最优化解决问题,在“变式”训练中,培养学生思维的深刻性,强化对知识和方法的理解、掌握和变通,对问题进行多方向、多角度

7、、多层次的思考,使思维不局限于固定的理解和某一固定的模式,从而提出新的问题或获得同一问题的多种解法。例如在讲完课本上的等腰三角形的知识后,我又补充了等腰三角形的两解问题和变式问题。求证:等腰三角形底边的中点到两腰的距离相等。已知:在AABC中,AB=AC,BD=CD,DE丄AB于E,DF丄AC于F。求证:DE=DFo变式1已知:在AABC中,BD=CD,DE丄AB于E,DF丄AC于F,DE=DF。求证:AB=AC。变式2己知:在AABC中,AB=AC,DE丄AB于E,DF丄AC于F,DE=DF。求证:BD=CDo变式3己知:在△ABC中,AB=AC,

8、BD=CD,DE丄AB于E,DF丄AC于F,CM丄AB于M,求证:DE+DF=CM。变式4己知:在AABC中

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。