相交线和平行线教(学)案

相交线和平行线教(学)案

ID:22413790

大小:873.00 KB

页数:31页

时间:2018-10-29

相交线和平行线教(学)案_第1页
相交线和平行线教(学)案_第2页
相交线和平行线教(学)案_第3页
相交线和平行线教(学)案_第4页
相交线和平行线教(学)案_第5页
资源描述:

《相交线和平行线教(学)案》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、第五章相交线与平行线5.1相交线5.1.1对顶角【教学目标】1、具体情境中了解邻补角、对顶角,能找出图形中的一个角的邻补角和对顶角,理解对顶角相等,并能运用它解决一些问题2、过动手观察、操作、推断、交流等数学活动,进一步发展空间观念,培养识图能力、推理能力和有条理表达能力.毛【教学重点与难点】教学重点:重点:邻补角、对顶角的概念,对顶角性质与应用.教学难点:理解对顶角相等的性质的探索【教学方法】通过创设情境,以问题为载体给学生提供探索的空间,引导学生积极探索。教学环节的设计与展开,都以问题的解决为中心,使教学过程成为在教师

2、指导下学生的一种自主探索的学习活动过程,在探索中形成自己的观点。【教学过程】一、创设情境引入新课(设计说明:在现实生活中发现并提出简单的问题,吸引学生的注意力,激发学生自主学习的兴趣和积极性。从而自然引入新课。)问题:在我们的生活的世界中,蕴涵着大量的相交线和平行线,大家对它们也不陌生,(播放图片)请找出图片中的相交线、平行线,你能再找出一些身边的相交线、平行线的实例吗?比如:教室种黑板面相邻的两条边、相对的两条边,操场上的双缸,方格纸上的横线和竖线等等,都给人以相交线、平行线的形象。二、探索新知解决问题1.观察剪刀剪布的

3、过程,引入两条相交直线所成的角学生观察、思考、回答问题问题1:张开地剪刀给人以什么形象?(出示一把张开的剪刀)张开的剪刀可看作两条相交直线。(教师可以同时在黑板上画出几何图形)在用剪刀剪布的过程中,用力握紧把手引发了剪刀张角的变化,表演剪布过程,让学生仔细观察,提出问题问题2:两个把手之间的的角发生了什么变化?剪刀刀刃张开的口又怎么变化?学生观察、思考、回答,得出:握紧把手时,随着两个把手之间的角逐渐变小,剪刀刃之间的角边相应变小.如果改变用力方向,随着两个把手之间的角逐渐变大,剪刀刃之间的角也相应变大.教师点评:如果把剪

4、刀的构造看作两条相交的直线,以上就关系到两条相交直线所成的角的问题,本节课就是探讨两条相交线所成的角及其特征.2.认识邻补角和对顶角,探索它们性质(1)角的位置关系探究问题:画直线AB、CD相交于点O,并说出图中4个角,两两相配共能组成几对角?各对角的位置关系如何?根据不同的位置怎么将它们分类?(完成表格中的前三项)两直线相交所形成的角分类位置关系数量关系学生思考并在小组内交流,全班交流.当学生直观地感知角有“相邻”、“对顶”关系时,教师引导学生用几何语言准确地表达,如:∠AOC和∠BOC有一条公共边OC,它们的另一边互为

5、反向延长线.∠AOC和∠BOD有公共的顶点O,而是∠AOC的两边分别是∠BOD两边的反向延长线.引导学生概括形成邻补角、对顶角概念.有一条公共边,而且另一边互为反向延长线的两个角叫做邻补角.如果两个角有一个公共顶点,而且一个角的两边分别是另一角两边的反向延长线,那么这两个角叫对顶角.初步应用.练习1:下列说法正确吗?如果错误,如何订正.①邻补角的“邻”就是“相邻”,就是它们有一条“公共边”,“补”就是“互补”,就是这两角的另一条边共同一条直线上。②邻补角可看成是平角被过它顶点的一条射线分成的两个角。③邻补角是互补的两个角,

6、互补的两个角也是邻补角。④有公共顶点,没有公共边的角是对顶角。(2)角的数量关系探究问题1:用量角器分别量一量各个角的度数,你发现各类角的度数有什么关系?(完成表格的第四项内容)学生得出互为邻补角的两角和为180º,互为对顶角的两角相等教师再提问:如果改变∠AOC的大小,会改变它与其它角的位置关系和数量关系吗?∠AOC的大小不影响它与其它角的位置及数量关系。在前面的活动中,学生已通过观察、测量得出了邻补角、对顶角间的数量关系,在此基础上可以引导学生思考:问题2:能不能用所学知识说明为什么邻补角和为180º,为什么对顶角相等

7、?在图1中,∠AOC的邻补角是∠BOC和∠AOD,所以∠AOC与∠BOC互补,∠AOC与∠AOD互补,根据“同角的补角相等”,可以得出∠AOD=∠BOC,类似地有∠AOC=∠BOD.板书对顶角性质:对顶角相等.强调对顶角概念与对顶角性质不能混淆:对顶角的概念是确定二角的位置关系,对顶角性质是确定为对顶角的两角的数量关系.并提醒学生今后只要看到对顶角就应想到它们相等。初步应用:1、可以让学生利用对顶角相等这条性质解释剪刀剪布现象。2、你还能举出生活中应用对顶角相等的例子吗?三、巩固训练熟练技能(设计说明:通过形式不同的练习加

8、强学生对知识的理解,训练学生灵活应用知识解决问题的能力)练习1:判断下列图中∠1、∠2是否是对顶角.练习2:如图,直线a,b相交,(1)当∠1=40°时,求∠2,∠3,∠4的度数.(2)当∠1=90°时,求∠2,∠3,∠4的度数四、反思总结情意发展问题1:本节课你学习了什么?问题2:本节课你还有哪些疑问

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。