《第21章一元二次方程》小结与复习教案

《第21章一元二次方程》小结与复习教案

ID:21438383

大小:77.50 KB

页数:4页

时间:2018-10-22

《第21章一元二次方程》小结与复习教案_第1页
《第21章一元二次方程》小结与复习教案_第2页
《第21章一元二次方程》小结与复习教案_第3页
《第21章一元二次方程》小结与复习教案_第4页
资源描述:

《《第21章一元二次方程》小结与复习教案》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、第二十二章《一元二次方程》小结一、本章知识结构框图二、本章知识点概括1、相关概念(1)一元二次方程:等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程。(2)一元二次方程的一般形式:ax2+bx+c=0(a≠0),其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项。(3)一元二次方程的根:一元二次方程的解也叫一元二次方程的根。用“夹逼”法估算出一元二次方程的根的取值范围.一次方程:一元一次方程,二元一次方程,三元方程整式方程二次方程:一元

2、二次方程,二元二次方程*(4)有理方程高次方程:分式方程2、降次——解一元二次方程(1)配方法:通过配成完全平方形式来解一元二次方程的方法,叫配方法.配方法是为了降次,把一个一元二次方程转化为两个一元一次方程来解.其步骤是:①方程化为一般形式;②移项,使方程左边为二次项和一次项,右边为常数项;③化二次项系数为1;④配方,方程两边都加上一次项系数一半的平方,使方程左边是完全平方式,从而原方程化为(mx+n)2=p的形式;⑤如果p≥0就可以用开平方降次来求出方程的解了,如果p<0,则原方程无实数根。(2)公式法:利用

3、求根公式解一元二次方程的方法叫公式法.其方法为:先将一元二次方程化为一般形式ax2+bx+c=0,当⊿=b2-4ac≥0时,将a、b、c代入求根公式x=(b2-4ac≥0)就得到方程的根.(3)分解因式法:先因式分解使方程化为两个一次式的乘积等于0的形式,再使这两个一次式分别等于0,从而降次.这种解法叫做因式分解法.步骤是:①通过移项将方程右边化为0;②通过因式分解将方程左边化为两个一次因式乘积;③令每个因式等于0,得到两个一元一次方程;④解这两个一元一次方程,得一元二次方程的解。3、一元二次方程根的判别式(1)

4、⊿=b2-4ac叫一元二次方程ax2+bx+c=0(a≠0)的根的判别式。(2)运用根的判别式,在不解方程的前提下判别根的情况:①⊿=b2-4ac>0方程有两个不相等实数根;②⊿=b2-4ac=0方程有两个相等实数根;③⊿=b2-4ac<0方程没有实数根;④⊿=b2-4ac≥0 方程有两个实数根。(3)应用:①不解方程,判别方程根的情况;②已知方程根的情况确定方程中字母系数的取值范围;③应用判别式证明方程的根的状况(常用到配方法);注意:运用根的判别式的前提是该方程是一元二次方程,即:a≠0。*4、一元二次方程根

5、与系数的关系(本部分内容为选学内容)(1)如果一元二次方程ax2+bx+c=0(a≠0)的两个实数根是,那么(2)应用:①验根,不解方程,利用根与系数的关系可以检验两个数是不是一元二次方程的两个根;②已知方程的一个根,求另一根及未知系数的值;③已知方程的两根满足某种关系,求方程中字母系数的值或取值范围;④不解方程可以求某些关于的对称式的值,通常利用到:当=0且≤0,两根互为相反数;当⊿≥0且=1,两根互为倒数。(重点强调:一元二次方程根与系数的关系是在二次项系数a≠0,⊿≥0前提条件下应用的,解题中一定要注意检验

6、)⑩用公式法因式分解二次三项式ax2+bx+c(a≠0):ax2+bx+c=a(x-x1)(x-x2)其中是方程ax2+bx+c=0(a≠0)的两个实数根。5、实际问题与一元二次方程传播式分支问题;平均变化率问题;数字问题;利润问题;图形的面积问题;匀变速问题;握手、写信问题;银行利率问题;浓度问题;方案设计问题等。三、典型例题辨析1、在下列方程中,是一元二次方程的有________个.①3x2+7=0②ax2+bx+c=0③(x-2)(x+5)=x2-1④3x2-=02、当m时,关于x的方程(m+2)x

7、m

8、+

9、3mx+1=0是一元二次方程.3、方程3x2-3=2x+1的二次项系数为________,一次项系数为_________,常数项为_________.4、根据下列表格的对应值:x3.233.243.253.26ax2+bx+c-0.06-0.020.030.09判断关于x的方程ax2+bx+c=0(a≠0)的一个根x的取值范围是________。5、已知方程5x2+mx-6=0的一个根是x=3,则m的值为________.6、已知三角形两边长分别为2和4,第三边是方程x2-4x+3=0的解,则这个三角形的周长是_

10、____.7、已知x2+y2+z2-2x+4y-6z+14=0,则x+y+z的值是_____.8、已知2和是关于的方程的两个根,则的值为,的值为.9、已知方程的两根为,则的值为。10、一个小组若干人,新年互送贺卡,若全组共送贺卡72张,则这个小组共_____人.11、一个两位数等于它的个位数的平方,且个位数字比十位数字大3,则这个两位数为_______.12、解下列方程:

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。