绝对值不等式的常见形式及解法

绝对值不等式的常见形式及解法

ID:21113674

大小:408.35 KB

页数:5页

时间:2018-10-19

绝对值不等式的常见形式及解法_第1页
绝对值不等式的常见形式及解法_第2页
绝对值不等式的常见形式及解法_第3页
绝对值不等式的常见形式及解法_第4页
绝对值不等式的常见形式及解法_第5页
资源描述:

《绝对值不等式的常见形式及解法》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、绝对值不等式的常见形式及解法 绝对值不等式解法的基本思路是:去掉绝对值符号,把它转化为一般的不等式求解,转化的方法一般有:(1)绝对值定义法;(2)平方法;(3)零点区域法。常见的形式有以下几种。  1. 形如不等式:利用绝对值的定义得不等式的解集为:。在数轴上的表示如图1。  2. 形如不等式:它的解集为:。在数轴上的表示如图2。  3. 形如不等式它的解法是:先化为不等式组:,再利用不等式的性质来得解集。  4. 形如它的解法是:先化为不等式组:,再利用不等式的性质求出原不等式的解集。例如:解不等式:(1)(2)(3)解:(1)由绝对

2、值的定义得:或解得(2)两边同时平方得:(3)令得。所以和3把实数分为三个区间,即:;。在这三个区间内来讨论原不等式的解集。初等幂函数图像极坐标转直角坐标的办法两边都乘以r,比如说r=2sinX两边同时乘以r成为r^2=2rsinXx^2+y^2=2y如2cos@,同乘r,即r^2=2rcos@,又因为r^2等于x^2+y^2,所以x^2+y^2=2y诱导公式记忆口诀:“奇变偶不变,符号看象限”。公式一:设α为任意角,终边相同的角的同三角函数的值相等:sin(2kπ+α)=sinαk∈zcos(2kπ+α)=cosαk∈ztan(2kπ+

3、α)=tanαk∈zcot(2kπ+α)=cotαk∈z公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=—sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与-α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α

4、)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanα推算公式:3π/2±α与α的三角函数值之间的关系:

5、sin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα诱导公式记忆口诀:“奇变偶不变,符号看象限”。“奇、偶”指的是π/2的倍数的奇偶,“变与不变”指的是三角函数的名称的变化:“变”是指正弦变余弦,正切变余切。(反之亦然成立)“符号看象限”的含义是:把角α看做锐角,不考虑α角所在象限,看n·(π/2)±α是第几象限角,从而得到等式

6、右边是正号还是负号。符号判断口诀:“一全正;二正弦;三正切;四余弦”。这十二字口诀的意思就是说:第一象限内任何一个角的四种三角函数值都是“+”;第二象限内只有正弦是“+”,其余全部是“-”;第三象限内只有正切和余切是“+”,其余全部是“-”;第四象限内只有余弦是“+”,其余全部是“-”。

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。