欢迎来到天天文库
浏览记录
ID:21093346
大小:778.00 KB
页数:7页
时间:2018-10-19
《平面向量的线性运算与练习》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、WORD文档下载可编辑平面向量的线性运算学习过程知识点一:向量的加法(1)定义已知非零向量,在平面内任取一点A,作=,=,则向量叫做与的和,记作,即=+=.求两个向量和的运算,叫做叫向量的加法.这种求向量和的方法,称为向量加法的三角形法则.说明:①运用向量加法的三角形法则时,要特别注意“首尾相接”,即第二个向量要以第一个向量的终点为起点,则由第一个向量的起点指向第二个向量终点的向量即为和向量.②两个向量的和仍然是一个向量,其大小、方向可以由三角形法则确定.③位移的合成可以看作向量加法三角形法则的物理模型.(2)向量加法的平行四边形法则以点O为起点作向量,,以OA,OB为邻边作,则以O为起点的对
2、角线所在向量就是的和,记作=。说明:①三角形法则适合于首尾相接的两向量求和,而平行四边形法则适合于同起点的两向量求和,但两共线向量求和时,则三角形法则较为合适.②力的合成可以看作向量加法平行四边形法则的物理模型.③对于零向量与任一向量(3)特殊位置关系的两向量的和①当向量与不共线时,+的方向不同向,且
3、+
4、<
5、
6、+
7、
8、;②当与同向时,则+、、同向,且
9、+
10、=
11、
12、+
13、
14、,③当与反向时,若
15、
16、>
17、
18、,则+的方向与相同,且
19、+
20、=
21、
22、-
23、
24、;若
25、
26、<
27、
28、,则+的方向与相同,且
29、+b
30、=
31、
32、-
33、
34、.(4)向量加法的运算律①向量加法的交换律:+=+②向量加法的结合律:(+)+=+(+)知识点二:向量的减
35、法专业技术资料分享WORD文档下载可编辑(1)相反向量:与长度相同、方向相反的向量.记作-。(2)①向量和-互为相反向量,即–(-).②零向量的相反向量仍是零向量.③任一向量与其相反向量的和是零向量,即 +(-)=(-)+=.④如果向量互为相反向量,那么=-,=-,+=.(3)向量减法的定义:向量加上的相反向量,叫做与的差.即:-=+(-)求两个向量差的运算叫做向量的减法.(4)向量减法的几何作法在平面内任取一点O,作,则.即可以表示为从向量的终点指向向量的终点的向量,这就是向量减法的几何意义.说明:①表示.强调:差向量“箭头”指向被减数②用“相反向量”定义法作差向量,-=+(-),显然,此法
36、作图较繁,但最后作图可统一.知识点三:向量数乘的定义(1)定义:一般地,我们规定实数与向量的积是一个向量,这种运算叫做向量的数乘,记作,它的长度与方向规定如下:⑴
37、λ
38、=
39、λ
40、
41、
42、⑵当时,λ的方向与的方向相同;当时,λ的方向与的方向相反.当时,λ=(2)向量数乘的运算律根据实数与向量的积的定义,我们可以验证下面的运算律:设、为实数,那么⑴λ(μ)=(λμ);⑵(λ+μ)=λ+μ;⑶λ(+)=λ+λ.知识点四:向量共线的条件向量()与共线,当且仅当有唯一一个实数,使=.学习结论专业技术资料分享WORD文档下载可编辑(1)两个向量的和仍然是向量,它的大小和方向可以由三角形法则和平行四边形法则确定,
43、这两种法则本质上是一致的.共线向量加法的几何意义,为共线向量首尾相连接,第一个向量的起点与第二个向量的终点连接所得到的有向线段所表示的向量.(2)可以表示为从向量的终点指向向量的终点的向量(3)实数与向量不能相加减,但实数与向量可以相乘.向量数乘的几何意义就是几个相等向量相加.(4)向量()与共线,当且仅当有唯一一个实数,使=。练习例1.已知任意两个非零向量,作,试判断A、B、C三点之间的位置关系.解:∵ =-=a+2b-(a+b)=b,且=-=a+3b-(a+b)=2b,∴=2.所以,A、B、C三点共线. 例2.如图,平行四边形ABCD的两条对角线相交于点,且=,=,试用,表示向量.解析:=
44、,所以,所以例3.一艘船从长江南岸A点出发以5km/h的速度向垂直于对岸的方向行驶,同时江水的流速为向东2km/h.⑴试用向量表示江水速度、船速以及船实际航行的速度(保留两个有效数字);⑵求船实际航行速度的大小与方向(用与江水速度间的夹角表示,精确到度).分析:速度是一个既有大小又有方向的量,所以可以用向量表示,速度的合成也就是向量的加法.解析:⑴如图,设表示船向垂直于对岸行驶的速度,表示水流的速度,以AD、AB作邻边作平行四边形ABCD,则就是船实际航行的速度.⑵在Rt△ABC中,
45、
46、=2,
47、
48、=5,∴
49、
50、=∵tan∠CAB=,∴专业技术资料分享WORD文档下载可编辑答:船实际航行速度的大小
51、约为5.4km/h,方向与水的流速间的夹角为约为68°.1.(2006上海理)如图,在平行四边形ABCD中,下列结论中错误的是()ABCD(A)=;(B)+=;(C)-=;(D)+=.2.(2007湖南文)若O、E、F是不共线的任意三点,则以下各式中成立的是() A. B. C. D.3.(2003辽宁)已知四边形ABCD是菱形,点P在对角线AC上(不包括端点A、C),则()A.B.C.D.4.
此文档下载收益归作者所有