欢迎来到天天文库
浏览记录
ID:20899395
大小:1.41 MB
页数:43页
时间:2018-10-17
《3------微分方程建模(不用打印)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、微分方程模型浙江大学控制系§3.1微分方程的几个简单实例在许多实际问题中,当直接导出变量之间的函数关系较为困难,但导出包含未知函数的导数或微分的关系式较为容易时,可用建立微分方程模型的方法来研究该问题,本节将通过一些最简单的实例来说明微分方程建模的一般方法。在连续变量问题的研究中,微分方程是十分常用的数学工具之一。例1(理想单摆运动)建立理想单摆运动满足的微分方程,并得出理想单摆运动的周期公式。从图3-1中不难看出,小球所受的合力为mgsinθ,根据牛顿第二定律可得:从而得出两阶微分方程:(3.1)这是理想单摆应满足的运动方程(3.1)是一个两阶非线性方程,不易求解。当θ很小时,sin
2、θ≈θ,此时,可考察(3.1)的近似线性方程:(3.2)由此即可得出(3.2)的解为:θ(t)=θ0cosωt其中当时,θ(t)=0故有MQPmg图3-1(3.1)的近似方程例2我方巡逻艇发现敌方潜水艇。与此同时敌方潜水艇也发现了我方巡逻艇,并迅速下潜逃逸。设两艇间距离为60哩,潜水艇最大航速为30节而巡逻艇最大航速为60节,问巡逻艇应如何追赶潜水艇。这一问题属于对策问题,较为复杂。讨论以下简单情形:敌潜艇发现自己目标已暴露后,立即下潜,并沿着直线方向全速逃逸,逃逸方向我方不知。设巡逻艇在A处发现位于B处的潜水艇,取极坐标,以B为极点,BA为极轴,设巡逻艇追赶路径在此极坐标下的方程为r
3、=r(θ),见图3-2。BAA1drdsdθθ图3-2由题意,,故ds=2dr图3-2可看出,故有:即:(3.3)解为:(3.4)先使自己到极点的距离等于潜艇到极点的距离,然后按(3.4)对数螺线航行,即可追上潜艇。追赶方法如下:为了保持自然资料的合理开发与利用,人类必须保持并控制生态平衡,甚至必须控制人类自身的增长。本节将建立几个简单的单种群增长模型,以简略分析一下这方面的问题。种群的数量本应取离散值,但由于种群数量一般较大,为建立微分方程模型,可将种群数量看作连续变量,由此引起的误差将是十分微小的。§3.2Malthus模型与Logistic模型模型1马尔萨斯(Malthus)模型
4、马尔萨斯在分析人口出生与死亡情况的资料后发现,人口净增长率r基本上是一常数,(r=b-d,b为出生率,d为死亡率),既:或(3.5)(3.6)(3.1)的解为:其中N0=N(t0)为初始时刻t0时的种群数。马尔萨斯模型的一个显著特点:种群数量翻一番所需的时间是固定的。令种群数量翻一番所需的时间为T,则有:故模型2Logistic模型人口净增长率应当与人口数量有关,即:r=r(N)从而有:(3.7)r(N)是未知函数,但根据实际背景,它无法用拟合方法来求。为了得出一个有实际意义的模型,我们不妨采用一下工程师原则。工程师们在建立实际问题的数学模型时,总是采用尽可能简单的方法。r(N)最简单
5、的形式是常数,此时得到的就是马尔萨斯模型。对马尔萨斯模型的最简单的改进就是引进一次项(竞争项)对马尔萨斯模型引入一次项(竞争项),令r(N)=r-aN此时得到微分方程:或(3.8)(3.8)被称为Logistic模型或生物总数增长的统计筹算律,是由荷兰数学生物学家弗赫斯特(Verhulst)首先提出的。一次项系数是负的,因为当种群数量很大时,会对自身增大产生抑制性,故一次项又被称为竞争项。(3.8)可改写成:(3.9)图3-5对(3.9)分离变量:两边积分并整理得:令N(0)=N0,求得:故(3.9)的满足初始条件N(0)=N0的解为:(3.10)易见:N(0)=N0,N(t)的图形请
6、看图3.5模型检验用Logistic模型来描述种群增长的规律效果如何呢?1945年克朗皮克(Crombic)做了一个人工饲养小谷虫的实验,数学生物学家高斯(E·F·Gauss)也做了一个原生物草履虫实验,实验结果都和Logistic曲线十分吻合。大量实验资料表明用Logistic模型来描述种群的增长,效果还是相当不错的。例如,高斯把5只草履虫放进一个盛有0.5cm3营养液的小试管,他发现,开始时草履虫以每天230.9%的速率增长,此后增长速度不断减慢,到第五天达到最大量375个,实验数据与r=2.309,a=0.006157,N(0)=5的Logistic曲线:几乎完全吻合,见图3.6
7、。图3-6Malthus模型和Logistic模型的总结Malthus模型和Logistic模型均为对微分方程(3.7)所作的模拟近似方程。前一模型假设了种群增长率r为一常数,(r被称为该种群的内禀增长率)。后一模型则假设环境只能供养一定数量的种群,从而引入了一个竞争项。用模拟近似法建立微分方程来研究实际问题时必须对求得的解进行检验,看其是否与实际情况相符或基本相符。相符性越好则模拟得越好,否则就得找出不相符的主要原因,对模型进行修改。Malt
此文档下载收益归作者所有