欢迎来到天天文库
浏览记录
ID:20613684
大小:25.50 KB
页数:4页
时间:2018-10-14
《平面简谐波波函数61509》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、平面简谐波的波函数61509必须有所知,否则不如死。——罗曼·罗兰四、平面简谐波的波函数 一、什么是波函数 在波动中,每一个质点都在进行振动,对一个波的完整的描述,应该是给出波动中任一质点的振动方程,这种方程称为波动方程(或波函数)。我们知道,简谐波(余弦波或正弦波)是最基本的波,特别是平面简谐波,它的规律更为简单。我们先讨论平面简谐波在理想的无吸收的均匀无限大介质中传播时的波动方程。二、平面简谐波的特点 我们在上一知识点中知道,平面简谐波传播时,介质中各质点的振动频率相同。对于在无吸收的均匀介质中传播的平面波,各质点的振幅也
2、相等。因而介质中各质点的振动仅相位不同,表现为相位沿波的传播方向依次落后,因此我们将重点讨论相位。根据波阵面的定义我们知道,在任一时刻处在同一波阵面上的各点有相同的相位,因而有相同的位移。因此,只要知道了任意一条波线上波的传播规律,就可以知道整个平面波的传播规律。 设平面简谐波的周期为T,波长为λ,波速为u,对于波线上的两点,见下图所示,若B点比A点距离波源要远l,l称为A、B之间的波程,就是波由A点到B点所经历的路程。一个振动状态从A点传到B点需要一段时间Δt=l/u,即A点的振动到达某一状态后,要过Δt这么一段时间B点才到达这
3、个状态,也就是说,B点的振动要比A点在时间上落后。 平面简谐波的波程和相位差 由于A点和B点在进行同频率的简谐振动,按前面讨论过的两个同频率振动的相位差和时间差的关系,我们可以得到A点和B点的相位差 这表示B点距离波源比A点每远一个λ,相位落后一个2π。从上式我们容易判断,在同一波线上的两点,若它们的距离为整数个λ,则它们的振动同相;若它们的距离为半整数个λ,则它们的振动反相。三、平面简谐波的波动方程 下面我们通过对相位的分析给出平面简谐波的波动方程。如下图所示,设有一列平面简谐波沿x轴的正方向传播,波速
4、为u。取任意一条波线为x轴,设O为x轴的原点。假定O点处(即x=0处)质点的振动方程为 推导波动方程用图 现在考察波线上任意一点P的振动,设该点的坐标为x。如上所述,P点和O点振动的振幅和频率相同,而P点振动的相位比O点落后。O点到P点的波程为x,则P点的振动在时间上比O点落后,故P点的振动为 也可以通过相位差来进行推导,则P点的振动在相位上比O点落后,故P点的振动为 不难验证,以上两个方程实际上是同一个振动的两个不同的表述。它们都表示的是波线上(坐标为x)的任一点处质点的振动方程,这正是我们希望
5、得到的沿x轴方向前进的平面简谐波的波动方程。四、波函数的讨论 1、波的传播方向与波函数 在上图中,P点的坐标x为正值,如果x为负值,P点的相位应该比O点超前。把x带入波函数中,由于x是负值,这表示P点的相位确实比O点超前,可见方程的形式不会因考察点的位置而改变。 在上面的讨论中,我们设波是沿着x轴正向传播的,这称为正行波。若波逆着x轴传播(反行波),则图中的P点的相位应比O点超前,我们规定波速u始终取正值(速率),因而波函数表达式中x前面的负号应改为正号,因而简谐波的波动方程的一般形式(通式)为 式中负号对应于正行波
6、,正号对应于反行波。方程中的φ为原点初相。 2、波函数的其它形式 利用关系式和,可以将平面简谐波方程改写成多种形式: 我们讨论平面简谐波的时候,为了简单,往往直接把波的传播的方向作为x轴的方向,因而波动方程中x前面的符号就是负号。如果再取原点振动的位移到达正最大的时候作为计时起点,因而原点初相为零。于是波动方程化为比较简单的形式 或 这是波动方程常用的形式。 3、振动曲线与波形曲线 为了弄清楚波动方程的物理意义,我们作进一步的分析。在波动方程中含有x和t两个自变量,如果x给定(即考察该处
7、的质点),那么位移y就只是t的周期函数,这时这个方程表示x处质点在各不同时刻的位移,也就是该质点的振动方程,方程的曲线就是该质点的振动曲线。下图(a)中描出的即一列简谐波在x=0处质点的振动曲线。如果波动方程中的t给定,那么位移y将只是x的周期函数,这时方程给出的是t时刻波线上各个不同质点的位移。波动中某一时刻不同质点的位移曲线称为该时刻波的波形曲线,因而t给定时,方程就是该时刻的波形方程。下图(b)中描出的即是t=0时一列沿x方向传播的简谐波的波形曲线。无论是横波还是纵波,它们的波形曲线在形式上没有区别,不过横波的位移指的是横向位
8、移,表现的是峰谷相间的图形;纵波的位移指的是纵向位移,表现的是疏密相间的图形。在一般情况下,波动方程中的x和t都是变量。这时波动方程具有它最完整的含义,表示波动中任一质点的振动规律:波动中任一质点的相位随时间变化,每过一个周期T相位增
此文档下载收益归作者所有