欢迎来到天天文库
浏览记录
ID:20544424
大小:168.00 KB
页数:8页
时间:2018-10-13
《北京市门头沟区2013-2014学年八年级上期末数学试题及答案》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、门头沟区2013—2014学年度第一学期期末调研试卷八年级数学考生须知1.本试卷共8页,共七道大题,29道小题。2.本试卷满分120分,考试时间120分钟。3.在试卷密封线内准确填写学校名称、班级和姓名。4.在试卷上,除作图题可以用铅笔外,其他试题用黑色字迹签字笔作答。一、选择题(本题共40分,每小题4分)下列各题均有四个选项,其中只有一个是符合题意的.1.9的平方根是()A.±3B.-3C.3D.812.在下列实数中,无理数是()A.B.C.0D.93.如果分式在实数范围内有意义,那么x的取值范围是()A.
2、x≠2B.x>2C.x≥2D.x<24.下列各式中,是最简二次根式的是()A.B.C.D.5.下列图形中,是轴对称图形的是()ABCD6.“抛一枚均匀硬币,落地后正面朝上”这一事件是()A.必然事件B.不可能事件C.确定事件D.随机事件7.下列命题的逆命题是真命题的是()A.如果两个角是直角,那么它们相等B.全等三角形对应角相等C.两直线平行,同位角相等D.对顶角相等8.如果等腰三角形的两边长分别为7cm和3cm,那么它的第三边的长是()A.3cmB.4cmC.7cmD.3cm或7cm9.如图,点A,D,C,
3、F在同一条直线上,且∠B=∠E=90°,添加下列所给的条件后,仍不能判定△ABC与△DEF全等的是( )A.AB=DE,BC=EFB.AC=DF,∠BCA=∠FC.AC=DF,BC=EFD.∠A=∠EDF,∠BCA=∠F10.如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm.现将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,则CD等于()A.2cmB.3cmC.4cmD.5cm二、填空题(本题共24分,每小题3分)11.的相反数是.12.8的立方根是.13.如果分式的值为0,那么
4、x=.14.一个箱子里装有10个除颜色外都相同的球,其中有1个红球,3个黑球,6个绿球.随机地从这个箱子里摸出一个球,摸出绿球的可能性是.15.如果实数a,b满足,那么a+b= .16.如果实数a在数轴上的位置如图所示,那么.17.已知:如图,正方形ABCD的边长是8,点M在DC上,且DM=2,N是AC边上的一动点,则DN+MN的最小值是.18.如图,在△ABC中,AB=AC=24厘米,∠ABC=∠ACB,BC=16厘米,点D为AB的中点.如果点P在线段BC上以4厘米/秒的速度由B点向C点运动,同时,点Q在
5、线段CA上由C点向A点运动.当点Q的运动速度为厘米/秒时,能够在某一时刻使△BPD与△CQP全等.三、解答题(本题共21分,第19~21题每小题5分,第22题6分)19.计算:20.计算:解:解:21.解方程:.解:22.先化简,再求值:,其中m=9.解:四、解答题(本题共17分,第23~25题每小题5分,第26题2分)23.已知:如图,F、C是AD上的两点,且AB=DE,AC=DF,BC=EF.求证:(1)△ABC≌△DEF;(2)∠B=∠E.证明:24.已知:如图,△ABC是等边三角形,E是AC上一点,D
6、是BC延长线上一点,连接BE和DE,若∠ABE=40°,BE=DE,求∠CED的度数.解:25.已知:如图,E为AC上一点,∠BCE=∠DCE,∠CBE=∠CDE.求证:(1)△BCE≌△DCE;(2)AB=AD.证明:26.已知:如图,△ABC,求作一点P,使P到∠A的两边的距离相等,且PA=PB.要求:尺规作图,并保留作图痕迹,不写作法.五、解答题(本题6分)27.列分式方程解应用题:为帮助灾区人民重建家园,某校学生积极捐款.已知第一次捐款总额为9000元,第二次捐款总额为12000元,且两次人均捐款额相
7、等,但第二次捐款人数比第一次多50人.求该校第二次捐款的人数.解:六、解答题(本题共12分,第28题5分,第29题7分)28.阅读下列材料:通过小学的学习我们知道,分数可分为“真分数”和“假分数”.而假分数都可化为带分数,如:.我们定义:在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”.如:,这样的分式就是假分式;再如:,这样的分式就是真分式.类似的,假分式也可以化为带分式(即:整式与真分式的和的形式).如:;再如
8、:.解决下列问题:(1)分式是分式(填“真分式”或“假分式”);(2)假分式可化为带分式的形式;(3)如果分式的值为整数,那么x的整数值为.29.在△ABC中,AB=AC,点D是射线CB上的一动点(不与点B、C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连接CE.(1)如图1,当点D在线段CB上,且∠BAC=90°时,那么∠DCE=▲度;(2)设∠BAC=,∠DCE
此文档下载收益归作者所有