欢迎来到天天文库
浏览记录
ID:20157111
大小:1.63 MB
页数:27页
时间:2018-10-09
《2013山东高考数学二轮复习 专题二 函数与导数:1-2-3第三讲 导数的应用》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第三讲 导数的应用导数的几何意义(1)函数y=f(x)在x=x0处的导数f′(x0)就是曲线y=f(x)在点(x0,f(x0))处的切线的斜率,即k=f′(x0);(2)曲线y=f(x)在点(x0,f(x0))处的切线方程为y-f(x0)=f′(x0)(x-x0).已知函数f(x)=x3-x.(1)求曲线y=f(x)的过点(1,0)的切线方程;(2)若过x轴上的点(a,0)可以作曲线y=f(x)的三条切线,求a的取值范围.解析:(1)由题意得f′(x)=3x2-1.曲线y=f(x)在点M(t,f(t))处的切线方程为y-f(t)=f′(t)(x-t),即y=(3t2-1)
2、·x-2t3,将点(1,0)代入切线方程得2t3-3t2+1=0,解得t=1或-,代入y=(3t2-1)x-2t3得曲线y=f(x)的过点(1,0)的切线方程为y=2x-2或y=-x+.(2)由(1)知若过点(a,0)可作曲线y=f(x)的三条切线,则方程2t3-3at2+a=0有三个相异的实根,记g(t)=2t3-3at2+a.则g′(t)=6t2-6at=6t(t-a).当a>0时,函数g(t)的极大值是g(0)=a,极小值是g(a)=-a3+a,要使方程g(t)=0有三个相异的实数根,需使a>0且-a3+a<0,即a>0且a2-1>0,即a>1;当a=0时,函数g(
3、t)单调递增,方程g(t)=0不可能有三个相异的实数根;当a<0时,函数g(t)的极大值是g(a)=-a3+a,极小值是g(0)=a,要使方程g(t)=0有三个相异的实数根,需使a<0且-a3+a>0,即a<0且a2-1>0,即a<-1.综上所述,a的取值范围是(-∞,-1)∪(1,+∞).函数的单调性与导数的关系在区间(a,b)内,如果f′(x)>0,那么函数f(x)在区间(a,b)上单调递增;如果f′(x)<0,那么函数f(x)在区间(a,b)上单调递减.[例2](2012年高考山东卷改编)已知函数f(x)=(k为常数,e=2.71828…是自然对数的底数),曲线y=
4、f(x)在点(1,f(1))处的切线与x轴平行.(1)求k的值;(2)求f(x)的单调区间.由于曲线y=f(x)在(1,f(1))处的切线与x轴平行,所以f′(1)=0,因此k=1.(2)由(1)得f′(x)=(1-x-xlnx),x∈(0,+∞).令h(x)=1-x-xlnx,x∈(0,+∞),当x∈(0,1)时,h(x)>0;当x∈(1,+∞)时,h(x)<0.又ex>0,所以当x∈(0,1)时,f′(x)>0;当x∈(1,+∞)时,f′(x)<0.因此f(x)的单调递增区间为(0,1),单调递减区间为(1,+∞).(1)当a>0时,y=ax2+2x-1为开口向上的抛
5、物线,所以ax2+2x-1≥0在(0,+∞)上恒有解;(2)当a<0时,y=ax2+2x-1为开口向下的抛物线,要使ax2+2x-1≥0在(0,+∞)上有实数解,则Δ=>0,此时-16、f(x)在区间(a,b)内的极值(极大值或极小值);(2)将y=f(x)的各极值与f(a),f(b)进行比较,其中最大的一个为最大值,最小的一个为最小值.[例3](2012年高考北京卷)已知函数f(x)=ax2+1(a>0),g(x)=x3+bx.(1)若曲线y=f(x)与曲线y=g(x)在它们的交点(1,c)处具有公共切线,求a,b的值;(2)当a2=4b时,求函数f(x)+g(x)的单调区间,并求其在区间(-∞,-1]上的最大值.[解析](1)f′(x)=2ax,g′(x)=3x2+b,因为曲线y=f(x)与曲线y=g(x)在它们的交点(1,c)处具有公共切线,所以f7、(1)=g(1),且f′(1)=g′(1).即a+1=1+b,且2a=3+b.解得a=3,b=3.答案:D则当0
6、f(x)在区间(a,b)内的极值(极大值或极小值);(2)将y=f(x)的各极值与f(a),f(b)进行比较,其中最大的一个为最大值,最小的一个为最小值.[例3](2012年高考北京卷)已知函数f(x)=ax2+1(a>0),g(x)=x3+bx.(1)若曲线y=f(x)与曲线y=g(x)在它们的交点(1,c)处具有公共切线,求a,b的值;(2)当a2=4b时,求函数f(x)+g(x)的单调区间,并求其在区间(-∞,-1]上的最大值.[解析](1)f′(x)=2ax,g′(x)=3x2+b,因为曲线y=f(x)与曲线y=g(x)在它们的交点(1,c)处具有公共切线,所以f
7、(1)=g(1),且f′(1)=g′(1).即a+1=1+b,且2a=3+b.解得a=3,b=3.答案:D则当0
此文档下载收益归作者所有