梁的强度和刚度计算

梁的强度和刚度计算

ID:20102724

大小:1.81 MB

页数:47页

时间:2018-10-09

上传者:U-2462
梁的强度和刚度计算_第1页
梁的强度和刚度计算_第2页
梁的强度和刚度计算_第3页
梁的强度和刚度计算_第4页
梁的强度和刚度计算_第5页
资源描述:

《梁的强度和刚度计算》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

第九章梁的强度和刚度计算梁横截面上的正应力梁横截面上的剪应力梁的强度计算弯曲中心的概念梁的变形和刚度计算应力状态和强度理论小结第一节第二节第三节第四节第五节返回第六节 第七章梁的强度和刚度计算本章研究梁的应力和变形计算,解决梁的强度和刚度计算问题。梁的一般情况是横截面上同时存在剪力和弯矩两种内力,称作剪力(横力)弯曲。与此相应的截面上任一点处有剪应力τ和正应力σ。且剪应力τ只与剪力Q有关,正应力σ只与弯矩M有关。横截面上只有弯矩而没有剪力的弯曲称作纯弯曲。如图简支梁,AC、DB段为横力弯曲;CD段为纯弯曲。返回下一张上一张小结 第一节梁横截面上的正应力一、实验观察与分析:为推导梁横截面上的正应力,考虑纯弯曲情况。用三关系法:实验观察→平面假设;几何关系→变形规律,物理关系→应力规律,静力学关系→应力公式。①横线仍为直线,但倾斜角度d;②纵线由直变弯,仍与横线正交,凸边伸长,凹边缩短;③横截面相对于纵向伸长区域缩短,纵向缩短区域伸长。假设:①平面假设—变形前后横截面保持平面不变;中性层—长度不变的纤维层;中性轴—中性层与横截面的交线。②单向受力假设—纵向纤维之间互不挤压仅伸长或缩短。返回下一张上一张小结 二、正应力公式的推导:(一)变形几何关系:取梁微段dx考虑变形几何关系,得应变规律:当M>0时:y>0,ε>0,为受拉区;y<0,ε<0,为受压区。(二)物理关系:由假设2及虎克定律,梁横截面上的正应力变化规律为:此式表明:梁横截面上任一点的正应力,与该点距中性轴(z轴)的距离y成正比,而与该点距y轴的距离z无关。正应力沿截面高度呈直线规律分布。中性层处y=0,σ=0;上下边缘处有ymax,故有σmax。返回下一张上一张小结 (三)静力学关系:—中性轴Z必通过形心。—中性轴是截面的形心主轴。纯弯曲梁上各点只有正应力,微面积dA上法向合力dN=σdA。截面上各微内力形成沿X轴的空间平行力系。可简化成三个内力分量:Nx、My、Mz。式中:Iz—截面对其中性轴的惯性矩;M—截面上的弯矩;y—所求正应力点到中性轴的距离。—纯弯曲梁横截面上任一点正应力计算公式为避免符号错误,计算中各量以绝对值代入,σ符号依点所处区域直接判断。(根据弯矩方向,中性轴将截面分为受拉区和受压区;M>0,上压下拉;M<0,上拉下压。)—纯弯曲梁的变形计算公式返回下一张上一张小结 正应力公式的使用范围:①纯弯曲梁;②弹性范围(σ≤σp);③平面弯曲(截面有对称轴,形状不限);④细长梁的横力弯曲。(一般l/h>5为细长梁,其计算误差满足工程精度要求δ<5%。)例7-1图示悬臂梁。试求C截面上a、b两点的正应力和该截面最大拉、压应力。解:(1)计算C截面的弯矩M(2)确定中性轴位置,并计算惯性矩(3)求a、b两点的正应力(4)求C截面最大拉应力+max和最大压应力-max(在截面上下边缘。)返回下一张上一张小结 例7-218号工字钢制成的简支梁如图所示。试求D截面上a、b两点处的正应力。解:(1)求D截面的弯矩:MD=30kN.m(3)求D截面a、b两点的正应力:(2)确定中性轴位置和截面惯性矩:查型钢表IZ=1660cm4返回下一张上一张小结 第二节梁横截面上的剪应力一、矩形截面梁:矩形截面梁任意截面上剪力Q都与对称轴重合。对狭长横截面上剪应力的分布规律可作两个假设:(1)横截面上各点均与该面上Q同向且平行;(2)剪应力沿截面宽度均匀分布。从梁微段中取窄条cdmn分析:返回下一张上一张小结 矩形截面剪应力计算公式:式中:Q—横截面上的剪力;Iz—横截面对其中性轴的惯性矩;b—所求剪应力作用点处的截面宽度;Sz*—所求剪应力作用点处的横线以下(或以上)的截面积A*对中性轴的面积矩。矩形截面:τ沿截面高度按抛物线规律变化。由剪切虎克定律τ=Gγ,知剪应变沿截面高度也按抛物线规律变化,引起截面翘曲。但变形很小,可忽略不计。返回下一张上一张小结 二、其它形状截面的剪应力:1.工字形截面梁:工字形截面是由上、下翼缘及中间腹板组成的。1)腹板上的剪应力:腹板为狭长矩形,承担截面绝大部分剪应力。式中:Q—横截面上的剪力;h1—腹板高度;Iz—截面对z轴惯性矩;d—腹板厚度;Szmax—中性轴一侧面积对中性轴的惯性矩;(对于型钢,Szmax:Iz的值可查型钢表确定)故中性轴处有最大剪应力2)翼缘上的剪应力:翼缘上的剪应力情况较复杂。竖向分量很小且分布复杂,一般不考虑;水平分量认为沿翼缘厚度均匀分布,计算公式与矩形截面的相同,其方向与竖向剪应力方向之间存在“剪应力流”的规律。Sz—欲求应力点到翼缘边缘间的面积对中性轴惯性矩;δo—翼缘厚度。返回下一张上一张小结 2.T字型截面:T字型截面与工字型截面相似,最大剪应力仍发生在截面中性轴上。其腹板上应力为:3.圆形及环形截面:圆形与薄壁环形截面其最大竖向剪应力也都发生在中性轴上,并沿中性轴均匀分布,其值为:圆形截面薄壁环形截面式中:Q—截面上的剪力A1、A2—圆形、薄壁环形截面的面积所有开口薄壁截面的剪应力均符合“剪应力流”规律。返回下一张上一张小结 例7-3:矩形截面简支梁如图,已知:l=2m,h=15cm,b=10cm,h1=3cm,q=3kN/m.试求A支座截面上K点的剪应力及该截面的最大剪应力.解:1、求剪力:QA=3kN2、求K点剪应力:3、求最大剪应力:返回下一张上一张小结 例7-4倒T形截面外伸梁如图,已知:l=600mm,b=30mm,P1=24kN,P2=9kN,y1=72mm,Iz=573cm4,试求梁横截面上的最大剪应力。解:1.求最大剪力:Qmax=15kN,在CB梁段。2.求最大剪应力:在中性轴上。返回下一张上一张小结 第三节梁的强度计算一、梁的正应力强度条件:为了保证梁在外力作用下能安全正常工作,必须限制梁内的最大应力不超过材料的许用应力。由此建立梁的强度条件并进行梁的强度计算。危险截面—最大应力点所在截面;(等直梁为最大内力截面)危险点—危险截面上的最大应力作用点。等直梁的危险截面危险点为最大弯矩截面上下边缘处各点。返回下一张上一张小结 (1)强度校核:(2)选择截面:(3)确定梁的许可荷载二、剪应力强度条件:三、梁的强度计算:一般情况下,细长梁多为横力弯曲,横截面上同时存在弯矩和剪力,应同时满足正应力和剪应力强度条件。由此可进行三方面的强度计算:返回下一张上一张小结 例7-5图示为T形截面的铸铁梁。已知:y1=5.2cm,y2=8.8cm,P1=10.8kN,P2=4.8kN,a=1m,铸铁许用拉应力[+]=30MPa,许用压应力[-]=60MPa,试校核梁的正应力强度。解:(1)作出梁的弯矩图,可知:MC=3.0KN.m;MD=-4.8KN.m(2)梁的两个抗弯截面模量为:(3)C截面的正应力强度校核:(4)D截面的正应力强度校核:(5)最大拉应力发生在C截面的下边缘处,最大压应力发生在D截面的下边缘处,其值分别为:返回下一张上一张小结 例7-6:试为图示的施工用钢轨枕木选择矩形截面。已知矩形截面尺寸的比例为b:h=3:4,枕木的弯曲许用正应力[]=15.6MPa,许用剪应力[]=1.7MPa,钢轨传给枕木的压力P=49KN。解:(1)由正应力强度条件设计截面尺寸(2)校核剪应力强度(3)按剪应力强度条件重新设计截面返回下一张上一张小结 例7-7一外伸梁如图所示,梁上受集中力P的作用.已知a=25cm,l=100cm,梁由2.6号工字钢制成,材料的弯曲许用正应力[]=170MPa,许用剪应力[]=100MPa,试求此梁的许可荷载[P].解:查表得:(1)按正应力强度条件确定[P](2)校核剪应力强度此梁的许可荷载[P]=52.7kN返回下一张上一张小结 ①A相同时,截面高度尽量大;四、梁的合理截面:梁的设计应达到即安全又经济的要求。即要保证梁具有足够的强度,安全工作;又要充分发挥材料的作用,节省材料。由此可知:与强度有关的材料性质[σ]应尽量大;荷载及结构确定的Mmax应尽量小;而提高梁的弯曲强度,主要从提高Wz着手,即选择合理截面形式,使Wz/A的值尽量大。②把大部分面积布置在距中性轴较远的截面边缘,提高Wz/A的值;Wz/A=(0.27-0.31)h>0.167h>0.125h;(工字形>矩形>圆形)③使截面两边同时达到许用应力;④综合考虑梁的有关刚度、稳定、使用要求及制造工艺等因素。如:过分强调加大h值,可能使截面侧向失稳;木梁不用工、环形截面,以避免增加加工费等。返回下一张上一张小结 第四节弯曲中心的概念当外力作用在梁的纵向对称平面内时,梁产生平面弯曲。但截面没有纵向对称轴时,沿形心主轴作用的荷载不产生平面弯曲。如图槽形截面,P力使梁弯曲;截面上的剪应力流形成扭矩(腹板上的剪力Q’和翼缘上的T可求其作用在A点的合力Q,Q与P形成扭矩)使梁扭转;梁产生弯扭组合变形。若使梁仅产生平面弯曲,P必须作用在过弯曲中心的纵向平面内。任何形状的截面都存在弯曲中心。弯曲中心的位置与梁所受的荷载无关,只取决于截面的几何形状。可以证明,弯曲中心位于①截面的对称轴上;②中线交点;③与形心重合。型钢截面的弯曲中心可查有关图表。弯曲中心—梁仅产生平面弯曲时,外力在截面上的作用位置。返回下一张上一张小结 第五节梁的变形和刚度计算一、挠度和转角1、梁的挠曲线(弹性曲线)—梁弯曲后的轴线,为一条光滑的平面曲线。2、挠度y—梁横截面形心垂直杆轴方向的线位移,称为该截面的挠度,用y表示,向下为正。(水平方向线位移略去不计)3、转角θ—梁横截面绕中性轴转过的角度,称为该截面的转角,用θ表示,顺时针为正。单位:弧度。梁的挠度方程(挠曲线方程):y=f(x)梁的转角方程:只要确定了梁的挠曲线方程,则任何横截面的挠度和转角都可由此求出。所以,求梁变形的关键是求出其挠曲线方程。单位:mm.返回下一张上一张小结 二、梁的挠曲线的近似微分方程式忽略剪力对梁变形的影响,则工程中常用的细长梁的变形由所选坐标系和M的符号规定,取式中的负号。则得梁的挠曲线近似微分方程:返回下一张上一张小结 三、积分法计算梁的位移悬臂梁:在计算梁的位移时,对挠曲线近似微分方程积分一次得转角方程,积分两次得挠度方程,此法称为积分法。对均质材料等截面直梁,EIz为常量。则由积分一次得转角方程:积分两次得挠度方程:式中积分常数C、D由边界条件(梁中已知的截面位移)确定:简支梁:弯矩方程分段时的积分常数由连续条件(梁中已知的位移关系)确定:积分常数确定后,即可由转角方程和挠度方程求梁任一截面的转角和挠度。返回下一张上一张小结 例7-8:求图示悬臂梁自由端的转角和挠度,梁的EI为常数。解:(1)建弯矩方程,列挠曲线微分方程:(2)将微分方程积分得:(3)当x=0时,θA=0,得C=0;当x=0时,yA=0,得D=0;所以转角方程为:挠度方程为:(4)求转角挠度得:返回下一张上一张小结 四、叠加法计算梁的位移1、叠加原理:在弹性小变形范围内所求物理量(反力、内力、变形等)均与梁上荷载成线性关系,在这种情况下,几项荷载同时作用产生的效应与每一项荷载单独作用效应的代数和相等。2、叠加法计算步骤:①分解荷载(为每一荷载单独作用情况);②分别计算各荷载单独作用时梁的变形(对应截面的挠度和转角可分别查梁的变形表确定,教材表8-1);③叠加得最后结果(同一平面内荷载产生的变形代数相加,否则应该几何相加)。例7-9求图示简支梁的最大挠度和转角。梁的EI=常数,a>b。解:返回下一张上一张小结 例7-10等截面外伸梁如图,试求C截面的挠度,梁的EI为常数。解:分解梁为AB、BC两段:例7-11等截面悬臂梁如图,试求C截面的挠度,梁的EI为常数。解:分解荷载为1、2两种情况:返回下一张上一张小结 五、梁的刚度校核梁的刚度校核的目的是检查梁在荷载作用下产生的位移是否超过设计规定的容许值。机械工程中,一般对挠度和转角都进行校核;土建工程中,大多只校核挠度。校核挠度时,通常是以挠度的容许值与跨度的比值作为校核的标准。由此建立梁的刚度条件:强度条件和刚度条件都是梁必须满足的。土建工程中,一般情况下梁的强度条件起控制作用。设计梁时,一般由强度条件选择梁的截面,再校核刚度条件,不满足时再设法减少梁的变形。提高梁的抗弯刚度的措施:由①提高Wz/A的值;(与强度问题不同,局部增加惯性矩对梁整体变形的影响较小,应考虑加筋而不是加厚截面)②减少梁跨度l或在跨中增加支座;③增加材料的弹性模量E;但作用不大。因为高强度钢材的E值与普通钢材相近。返回下一张上一张小结 例7-12如图,平面钢闸门最底下一根主梁的计算简图,梁上作用有水压力,其集度q=29.6kN/m,已选择此梁为25b工字钢,试校核此梁的刚度。解:梁的许用挠度为:不满足刚度条件,应重新设计。选择28b工字钢,查表得:Iz=7480cm2。所以应选28b工字钢。返回下一张上一张小结 7-13矩形截面悬臂梁如图,已知:,单位跨度内的许用挠度.试校核该梁的强`刚度.解:1.强度校核2.刚度校核结论:该梁满足强`刚度要求.返回下一张上一张小结 第六节应力状态和强度理论一、应力状态的概念过受力构件内一点所有截面上的应力情况总和,称为该点的应力状态。如拉压杆斜截面应力:研究方法:取单元体。主平面—剪应力为零的面;主应力—主平面上的正应力;主单元体—三主平面组成的单元体;三个主应力按代数值排列为:σ1>σ2>σ3应力状态的分类:三向(空间)应力状态—三个主应力都不为零;双向(平面)应力状态—两个主应力不为零;(为本节研究重点)单向(简单)应力状态—两个主应力为零。此外为复杂应力状态。纯剪切状态—各面只有剪应力而无正应力。返回下一张上一张小结如简支梁。 二、平面应力状态分析—解析法1、平面应力状态任意截面应力计算公式:符号规定:σ—拉为正;τ—顺时针为正;α—逆时针为正。返回下一张上一张小结用与横截面夹角为的斜截面(面积为dA)截取楔形体,由利用三角公式化简整理可得:同理,由∑Fy=0可得: 2、主应力、主平面、主剪应力由(a)、(b)式可确定应力的极值及其作用面方位。返回下一张上一张小结 三、平面应力状态分析—图解法整理(a)、(b)式得应力圆方程:2.对应关系:①单元体面上应力值←→应力圆上点的坐标;②单元体上角←→应力圆上同转向2角;③单元体起算面x面←→应力圆起算点C点。1.应力圆的画法:①取坐标系σoτ;返回下一张上一张小结④作圆:以D为圆心,DC(DC’)为半径作圆。③定圆心D:连C,C’交σ轴于D点;②定特征点C,C’:按比例量取σx,σy,τx,τy; 3.用应力圆求解斜截面上的应力:4.用应力圆求主应力和主平面:从应力圆上按比例量取B1,B2点的坐标即主应力σ1,σ2;量取圆心角2α1即可确定主平面(或用作图法定)。返回下一张上一张小结从C点按α角转向量出2α圆心角定E点,按比例量E点坐标(OE’,E’E)即为σα,τα。 返回下一张上一张小结 5.用应力圆求主剪应力:从应力圆上按比例量取G1、G2点的纵坐标即τmax、τmin。且由图上几何关系知:由图还知:主剪应力平面上的正应力值不为零。G1、G2点的横坐标与圆心相同,等于。应力圆上任一点都代表相应的应力情况。利用同弧圆周角是圆心角的一半的几何关系,任意斜截面的方位、主平面、主剪应力作用平面的方位等,均可由主点K与相应点E、B1、B2、G1、G2等的连线方向直观表示。返回下一张上一张小结 四、三向应力圆:最大剪应力作用面与3主平面垂直,且与1和2主平面成450角。由空间应力状态的主单元体,分别作三个主方向的平面应力圆,可得三向应力圆。三向应力圆中的最大剪应力对应B点的纵坐标:三向应力状态中的最大正应力是1,最小正应力是3。其中的等号为三向应力圆退化为平面应力圆或点圆。返回下一张上一张小结 五、双向和三向应力状态的虎克定律:弹性范围内,材料处于单向应力状态时的虎克定律:双向应力状态的虎克定律:主应变-—单元体在三个主应力作用下,沿着三个主应力方向产生的正应变,用1,2,3表示。主应变也存在关系:一般平面应力情况:三向应力状态的虎克定律:(各向同性材料的广义虎克定律)返回下一张上一张小结 六、复杂应力状态下的应变能:应变能—由于弹性变形而积蓄的变形能,称为“弹性应变能”;简称应变能。比能—单位体积的应变能,也称为能密度。以u表示。比能可分解为两部分:体积比能—相应于体积改变而形状不变的部分,以uv表示;形状改变比能(歪形能密度)—相应于形状改变而体积不变的部分,以uf表示。返回下一张上一张小结 七、主应力迹线的概念:梁内任一点都有两个主应力,一为拉应力,二为压应力,两者的方向是互相垂直的。1.梁的主应力:小结返回下一张上一张 2.梁的主应力迹线:—曲线上各点切线方向既为该点主应力方向的曲线。(各点主应力方向的轨迹线)在钢筋混凝土梁中,受拉钢筋的布置大致与主拉应力迹线一致。小结返回下一张上一张八、强度理论1.单向拉(压)强度条件:σo—极限应力;可由试验确定。塑性材料:σo=σs;脆性材料:σo=σb;复杂应力状态下的材料实验不易做。 3.强度理论—关于材料破坏的主要因素的假说。四种常见的强度理论:(1)最大拉应力理论(第一强度理论):①破坏因素:最大拉应力②破坏条件:③强度条件:④适用范围:脆性材料(2)最大拉应变理论(第二强度理论):①破坏因素:最大拉应变②破坏条件:③强度条件:④适用范围:脆性材料返回下一张上一张小结2.材料的破坏形式:(1)脆性断裂;(2)塑性剪切; (3)最大剪应力理论(第三强度理论):①破坏因素:最大剪应力②破坏条件:③强度条件:④适用范围:塑性材料(4)形状改变比能理论(第四强度理论):①破坏因素:形状改变比能②破坏条件:③强度条件:④适用范围:塑性材料塑性材料梁的主应力强度计算:返回下一张上一张小结 例7-1420a工字钢制成简支梁如图所示,已知[]=150MPa,[]=95MPa,P=100KN,a=0.32m,l=2m,试对此梁进行强度校核。解:作M图,Q图。Mmax=32KM.mQmax=100KN查表:Iz=2370cm4,W=237cm3,返回下一张上一张小结 20a工字钢简支梁,校核强度。已知:[]=150MPa,[τ]=95MPa,P=100KN,a=0.32m,l=2m。M=32KM.mQ=100KN查表:Iz=2370cm4,W=237cm3,(1)校核正应力强度:(2)校核剪应力强度:(3)校核腹板与翼缘交界处的主应力强度1)K点的主应力校核2)加大截面改选20b号工字钢σ=113MPaτ=48.8MPa返回下一张上一张小结 小结三、梁的应力:一、梁的外力(平面弯曲受力特点和变形特点):二、梁横截面内力:弯矩M、剪力Q;绘内力图:直接法求截面内力;M=∑Mo(PiQ);Q=∑PiQ。内力图特征:q=0;q=C;P作用截面;M作用截面。返回下一张上一张小结 1.第一类危险点:正应力强度条件:2.第二类危险点:剪应力强度条件:3.第三类危险点:主应力强度条件:(塑性材料梁)四、梁的强度计算:五、梁的变形:挠度y(向下为正);转角θ(顺时针为正)。叠加法求梁截面的变形。六、梁的刚度计算:刚度条件:返回下一张上一张小结

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
关闭