选修4-4第二讲_参数方程(曲线的参数方程)2.ppt

选修4-4第二讲_参数方程(曲线的参数方程)2.ppt

ID:20016125

大小:501.00 KB

页数:14页

时间:2018-10-09

选修4-4第二讲_参数方程(曲线的参数方程)2.ppt_第1页
选修4-4第二讲_参数方程(曲线的参数方程)2.ppt_第2页
选修4-4第二讲_参数方程(曲线的参数方程)2.ppt_第3页
选修4-4第二讲_参数方程(曲线的参数方程)2.ppt_第4页
选修4-4第二讲_参数方程(曲线的参数方程)2.ppt_第5页
资源描述:

《选修4-4第二讲_参数方程(曲线的参数方程)2.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、圆的参数方程圆心为原点半径为r的圆的参数方程.其中参数θ的几何意义是OM0绕点O逆时针旋转到OM的位置时,OM0转过的角度圆心为,半径为r的圆的参数方程一般地,同一条曲线,可以选取不同的变数为参数,另外,要注明参数及参数的取值范围。例1如图,圆O的半径为2,P是圆上的动点,Q(6,0)是x轴上的定点,M是PQ的中点,当点P绕O作匀速圆周运动时,求点M的轨迹的参数方程。yoxPMQ解:设点M的坐标是(x,y),则点P的坐标是(2cosθ,2sinθ).由中点坐标公式可得因此,点M的轨迹的参数方程是例2已知x、y满足,求的最大值和最小

2、值.解:由已知圆的参数方程为例3已知A(―1,0)、B(1,0),P为圆上的一点,求的最大值和最小值以及对应P点的坐标.参数方程和普通方程的互化把它化为我们熟悉的普通方程,有cosθ=x-3,sinθ=y;于是(x-3)2+y2=1,轨迹是什么就很清楚了在例1中,由参数方程直接判断点M的轨迹是什么并不方便,一般地,可以通过消去参数而从参数方程得到普通方程;曲线的参数方程和普通方程是曲线方程的不同形式.在参数方程与普通方程的互化中,必须使x,y的取值范围保持一致,否则,互化就是不等价的.把参数方程化为普通方程:例1、把下列参数方程化

3、为普通方程,并说明它们各表示什么曲线?解:(1)由得代入得到这是以(1,1)为端点的一条射线;所以把得到(1)(2)(3)x=t+1/ty=t2+1/t2(1)(x-2)2+y2=9(2)y=1-2x2(-1≤x≤1)(3)x2-y=2(x≥2或x≤-2)练习、将下列参数方程化为普通方程:步骤:(1)消参;(2)求定义域。B例2求参数方程表示()(A)双曲线的一支,这支过点(1,1/2);(B)抛物线的一部分,这部分过(1,1/2);(C)双曲线的一支,这支过点(–1,1/2);(D)抛物线的一部分,这部分过(–1,1/2).普通

4、方程化为参数方程:普通方程化为参数方程需要引入参数:如:直线l的普通方程是2x-y+2=0,可以化为参数方程:一般地,如果知道变量x,y中的一个与参数t的关系,例如x=f(t),把它代入普通方程,求出另一个变量与参数t的关系y=g(t),那么:就是曲线的参数方程。在参数方程与普通方程的互化中,必须使x,y的取值范围保持一致例3求椭圆的参数方程:(1)设为参数;(2)设为参数.为什么两个参数方程合起来才是椭圆的参数方程?在y=x2中,x∈R,y≥0,因而与y=x2不等价;练习:曲线y=x2的一种参数方程是().在A、B、C中,x,y

5、的范围都发生了变化,而在D中,x,y范围与y=x2中x,y的范围相同,代入y=x2后满足该方程,从而D是曲线y=x2的一种参数方程.在参数方程与普通方程的互化中,必须使x,y的取值范围保持一致。否则,互化就是不等价的.解:完成活页:圆的参数方程一节

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。