2013电子设计大赛四旋翼自主飞行器_(b1_题)

2013电子设计大赛四旋翼自主飞行器_(b1_题)

ID:19813897

大小:187.82 KB

页数:10页

时间:2018-10-06

2013电子设计大赛四旋翼自主飞行器_(b1_题)_第1页
2013电子设计大赛四旋翼自主飞行器_(b1_题)_第2页
2013电子设计大赛四旋翼自主飞行器_(b1_题)_第3页
2013电子设计大赛四旋翼自主飞行器_(b1_题)_第4页
2013电子设计大赛四旋翼自主飞行器_(b1_题)_第5页
资源描述:

《2013电子设计大赛四旋翼自主飞行器_(b1_题)》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、2013年全国大学生电子设计竞赛课题:四旋翼自主飞行器(B题)【本科组】2013年9月7日I摘要为了满足四旋翼飞行器的设计要求,设计了以微控制器为核心的控制系统和算法。首先进行了各单元电路方案的比较论证,确定了硬件设计方案。四旋翼飞行器采用了固连在刚性十字架交叉结构上的4个电机驱动的一种飞行器,以78K0RCPU內核为基础,围绕新的RL78CPU內核演化而来的RL78/G13作为控制核心,工作频率高达32MHz,工作电压1.6V-5.5V,适合各种类型的消费类电子和工业应用,满足8/16位微控制器的需求,有助于降低系统功耗,削减总系统的构建

2、成本。采用9926BMOS管芯片的驱动直流电机,该驱动芯片具有内阻小、负载电流大、且控制简单的特性。通过采用MPU-6050整合的3轴陀螺仪、3轴加速器,并含可藉由第二个I2C端口连接其他厂牌之加速器、磁力传感器、或其他传感器的数位运动处理(DMP:DigitalMotionProcessor)硬件加速引擎,由主要I2C端口以单一数据流的形式,向应用端输出完整的9轴融合演算技术InvenSense的运动处理资料库,可处理运动感测的复杂数据,降低了运动处理运算对操作系统的负荷,实现了四旋翼飞行器运动速度和转向的精准控制。通过HC-SR04超声

3、波测距模块实现了对四旋翼飞行器飞行高度的准确控制。通过激光传感器,实现了四旋翼飞行器沿黑线前进,在规定区域起降,投放铁片等功能,所采用的设计方案先进有效,完全达到了设计要求。关键词:四旋翼自主飞行器,激光,寻线,超声波,单片机III目录1系统方案11.1XXXX的论证与选择11.2XXXX的论证与选择11.3控制系统的论证与选择12系统理论分析与计算12.1XXXX的分析12.1.1XXX12.1.2XXX12.1.3XXX12.2XXXX的计算12.2.1XXX12.2.2XXX12.2.3XXX12.3XXXX的计算22.3.1XXX2

4、2.3.2XXX22.3.3XXX23电路与程序设计23.1电路的设计23.1.1系统总体框图23.1.2XXXX子系统框图与电路原理图23.1.3XXXX子系统框图与电路原理图23.1.4电源23.2程序的设计23.2.1程序功能描述与设计思路23.2.2程序流程图34测试方案与测试结果34.1测试方案34.2测试条件与仪器34.3测试结果及分析34.3.1测试结果(数据)34.3.2测试分析与结论4附录1:电路原理图5附录2:源程序6III四旋翼自主飞行器(B题)【本科组】1系统方案本系统主要由电源模块、电机驱动模块、光电循迹模块模块、

5、超声波测高模块、姿态传感器模块组成,下面分别论证这几个模块的选择。1.1电源模块的论证与选择方案一:采用线性元器件LM7805三端稳压器构成稳压电路,为单片机等其他模块供电,输出纹波小,效率低,容易发热。方案二:采用元器件2596为开关稳压芯片,效率高,输出的纹波大,不容易发热。方案三:采用线性元器件2940构成稳压电路,为单片机等其他模块供电,输出纹波小,效率高,不容易发热,综合性能高。综合以上三种方案,选择方案三。1.2电机驱动模块的论证与选择方案一:采用三极管驱动,由于输出电流很大,容易发热,方案二:采用L298N电机驱动模块,通过电

6、流大,容易发热,使得电机转速变慢,载重量变小。方案三:采用场效应管9926B芯片组成的电机驱动模块,驱动能力好。能承受的最大电流为7.5A,符合要求。综合以上三种方案,选择方案三。1.3光电循迹模块模块的论证与选择方案一:采用CCD摄像头采集图片经过算法处理循迹,前瞻性比较好、循迹效果好,但是处理程序复杂、成本高。方案二:采用红外对管,有效距离太短,不能满足实际循迹要求。方案三:采用激光,前瞻性较好、抗干扰性较好。综合以上三种方案,选择方案三。1.4超声波测高模块的论证与选择采用E18-D50NK光电式传感器,这是一种集发射与接收于一体的光

7、电传感器。检测距离可以根据要求进行调节。该传感器具有探测距离远、受可见光干扰小。1.5姿态传感器模块的论证(1)概述四轴飞行器属于多旋翼飞行器,各个桨翼之间的旋转过程中总存在着相互干扰,这就导致在飞行过程中,飞行的稳定性较差;另外在飞行器的电机、桨叶及机身等方面要6求也较高,它要求各个旋翼的电机特性一致、各个桨叶的桨距及安装角度相同、机身对称等等。然而实际中这些条件很难满足,而且往往相差较大;因此飞行器稳定性差,且难以控制,在设计控制系统时着重需要考虑飞行器的稳定性设计。这样姿态测量在飞行器系统中就显得尤为必要,设计相应的传感器对飞行器的运

8、动姿态进行测量,有助于反馈当前姿态,确保飞行稳定。(2)传感器使用设计中选用加速度和角速度两种传感器来进行姿态测量,用加速度的测量数据来互补角速度传感器测量的不足;设计中采用In

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。