资源描述:
《乘法分配律教学设计》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、乘法分配律教学设计与反思教学目标:1、使学生在探索的过程中,能自主发现乘法分配律,并能用字母表示。2、通过观察、分析、比较,培养学生的分析、推理和概括能力。3、发挥学生主体作用,体验探究学习的快乐。教学重点:指导学生探索乘法的分配律。教学难点:乘法分配律的应用。教学准备:课件、口算题、例题、练习题等。教学策略:本节课的学习我主要采取自主探究学习,把问题教学法,合作教学法,情境教学法等结合运用于教学过程中。使学生自主、勇敢地体验尝试和实践活动来进行综合学习。教学流程:一、设疑导入师:同学们,上节课我们学习了乘法结合律和乘法交换率。谁来说一说,掌握乘法结合律和乘法交换率有什么
2、作用?生:可以使计算简便。师:同意吗?(同意。)接下来我们做几道口算题,看谁做得又对又快。其他同学快速判断。(生口算。)【设计意图:这样开门见山的导入,不但可以巩固旧知,为新课作铺垫,而且当学生快速口算到新课题时,会出现一种戛然而止的效果,出现问题情境,从而自然导入新课。】二、探究发现1.猜想。师:同学们算得很快,看看下道题你们能不能很快算出来。(出示:(10+4)×25。)师:这道题算得怎么不如刚才的快啊?生:它和前面的题目不一样。师:好,我们来看一下它与前面的题目有什么不同?生:前面的题都是乘号,这道题既有乘号还有加号。生:前面的算式都是3个数相乘,这个算式是两个数的
3、和同一个数相乘。师:这道题含有不同运算符号了,有能口算出来的吗?说说你的想法。生:(10+4)×25=10×25+4×25。师:为什么这样算哪?生:我是根据乘法分配律算的。师:你是怎么知道的?你知道什么是乘法分配律吗?生:我是从书上知道的,我知道它的字母公式(a+b)×c=a×c+b×c。师:你自学能力很强,但对乘法分配律的内涵还不了解,这节课我们就来探究乘法分配律好吗?(板书课题:乘法分配律。)2.验证。师:同学们看两个数的和同一个数相乘,如果可以这样计算的话,那可简便多了。到底能不能这样计算,我们来验证一下。请同学们在练习本上分别算出这两个算式的结果,看看是否相同。(
4、生活动计算。)师:说说你有什么发现。(两个算式的结果相同。)说明这两个算式关系是什么?(相等。)小结:通过验证,这道题确实可以这样算,那是不是所有的两个数的和同一个数相乘的算式都可以这样计算呢?通过这一个例子能下结论吗?(不能。)那怎么办?(再举几个例子。)好,下面请每个同学再举几个这样的例子,看看是不是所有的两个数的和同一个数相乘都可以这样计算?(学生计算,并汇报。)……师:由于时间关系,老师就写到这里,通过举例我们可以发现,两个数的和同一个数相乘都可以这样计算。有没有举出例子不能这样计算的?(没有。)一个例子不能说明问题,我们全班同学举了这么多例子,还有没写的用省略号
5、表示。我们都得到了同样的结论。下面请同学们观察黑板上的几组等式,看看你们得到的结论是什么?3.结论。生:两个数的和同一个数相乘,可以用这两个加数分别同这个数相乘,再把它们的积相加,结果不变。师:同学们真聪明,你们知道吗?这就是乘法的第三个运算定律“乘法分配律”。(出示课件,学生齐读分配律的意义。)师:如果老师用a、b、c表示两个加数和乘数,你能用字母表示乘法分配律吗?(a+b)×c=a×c+b×c师:回到第一题,看来利用乘法分配律,确实可以使一些计算简便。接下来,我们利用乘法分配律计算几道题。【设计意图:在探究乘法分配律的过程中,让学生经历了一次严密的科学发现过程:猜想—
6、—验证——结论。为学生的可持续学习奠定了基础。】三、练习应用(生练习应用定律。)师:通过这两道题的计算,我们可以看出,乘法分配律是互逆的。为了使计算简便,我们既可以从左边算式得到右边算式,又可以从右边算式得到左边算式。但遇到实际计算时,要因题而异。四、总结师:本节课我们学习了乘法分配律,看到乘法分配律,你们能联想到什么呢?(两个数的差,同一个数相除都可以应用这样的方法。)反思:本课的学习要使学生理解和掌握乘法分配律,并能正确地进行表述。让学生参与知识的形成过程,培养学生概括、分析、推理的能力,并渗透从特殊到一般,再由一般到特殊的认识事物的方法。本节课的教学较好地贯彻了新课
7、程标准的理念,主要体现在以下几点:一、主动探究,实现亲身经历和体验现代教学论认为:学生的学习过程应是学习文本批判、质疑和重新发现的过程,是在具体的情境中整个身心投入到学习活动,去经历和体验知识形成的过程,也是身心多方面需要的实现和发展过程。本节的教学中,我从口算导入新课,引出(10+4)×25这样一个特殊的算式。接下来,让学生猜想它的简算方法,然后让学生通过计算来验证方法的可行性,再让学生举例验证方法的普遍性,最后由学生通过观察、讨论、发现、归纳总结出乘法分配律。整个过程中,我不是把规律直接呈现在学生面前,而是让学生通过自主探