欢迎来到天天文库
浏览记录
ID:19254176
大小:244.00 KB
页数:24页
时间:2018-09-30
《完全平方公式数学课件》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、14.2.1完全平方公式乘法公式:(x+a)(x+b)=x2+(a+b)x+ab(a+b)(a-b)=a2-b2——平方差公式1.当a=-b时1.下列计算正确的是()A.(x-6)(x+6)=x2-6B.(3x-1)(3x+1)=3x2-1C.(-1+x)(-1-x)=x2-1D.(5ab+1)(5ab-1)=25a2b2-12.填空:1)()()=m2-n22)(2m-1)()=4m2-13)(-2m+1)()=1-4m23.计算:(a+2b+3)(a+2b-3)D2m+1m-nm+n2m+13.计算:(a+2b+3)(a+2b-3)解:原式=[(a+2b)+
2、3][(a+2b)-3]=(a+2b)2-32=(a+2b)(a+2b)-9=a2+2ab+2ab+4b2-9=a2+4ab+4b2-9计算:(a+b)2,(a-b)2解:(a+b)2=(a+b)(a+b)=a2+ab+ab+b2=a2+2ab+b2(a-b)2=(a-b)(a-b)=a2-ab-ab+b2=a2-2ab+b2完全平方公式(a+b)2=a2+2ab+b2(a-b)2=a2-2ab+b2两数和(或差)的平方,等于它们的平方和,加上(或者减去)它们的积的2倍.完全平方公式(a+b)2=a2+2ab+b2(a-b)2=a2-2ab+b2bbaaabab
3、a2b2baba(a-b)2abab(a+b)2=a2+2ab+b2,(a-b)2=a2-2ab+b2例1.计算:(x+2y)2,(x-2y)2解:(x+2y)2=(a+b)2=a2+2ab+b2=x2+4xy+4y2(x-2y)2=(a-b)2=a2-2ab+b2x2-2·x·2y+(2y)2x2+2·x·2y+(2y)2=x2-4xy+4y2解:1)(4a-b)2=(4a)2-2·4a·b+b2=16a2-8ab+b23)(-2x-1)2=[-(2x+1)]2=(2x+1)2=(2x)2+2·2x·1+1=4x2+4x+1例2.运用完全平方公式计算:1)(4
4、a-b)22)(y+)23)(-2x-1)22)(y+)2=y2+y+练习:P130-1=y2+2·y·+()2例3.运用完全平方公式计算:1)10222)19923)49824)79.82解:1)1022=(100+2)2=1002+2×100×2+22=10000+400+4=104042)1992=(200-1)2=2002-2×200×1+12=40000-400+1=39601例3.运用完全平方公式计算:1)10222)19923)49824)79.82解:3)4982=(500-2)2=5002-2×500×2+22=250000-2000+4=24
5、80044)79.82=(80-0.2)2=802-2×80×0.2+0.22=6400-32+0.04=6368.04练习:P110练习:指出下列各式中的错误,并加以改正:1)(-a-1)2=-a2-2a-1;2)(2a+1)2=4a2+1;3)(2a-1)2=2a2–2a+1.解:1)(-a-1)2=[-(a+1)]2=(a+1)2=a2+2a+1练习:指出下列各式中的错误,并加以改正:1)(-a-1)2=-a2-2a-1;2)(2a+1)2=4a2+1;3)(2a-1)2=2a2–2a+1.解:2)(2a+1)2=(2a)2+2·(2a)·1+12=4a2
6、+4a+1练习:指出下列各式中的错误,并加以改正:1)(-a-1)2=-a2-2a-1;2)(2a+1)2=4a2+1;3)(2a-1)2=2a2–2a+1.解:3)(2a-1)2=(2a)2-2·(2a)·1+12=4a2-4a+1乘法公式:(x+a)(x+b)=x2+(a+b)x+ab(a+b)(a-b)=a2-b2——平方差公式1.当a=-b时2.当a=b时(a+b)2=a2+2ab+b2(a-b)2=a2-2ab+b2——完全平方公式小结:1.完全平方公式是多项式乘法的特殊情况,要熟记公式的左边和右边的特点;2.有时式子需要先进行变形,使变形后的式子符合
7、应用完全平方公式的条件,即为“两数和(或差)”的平方,然后应用公式计算.想一想:(a+b)2与(-a-b)2相等吗?(a-b)2与(b-a)2相等吗?为什么?完全平方公式(a+b)2=a2+2ab+b2(a-b)2=a2-2ab+b2两数和(或差)的平方,等于它们的平方和,加上(或者减去)它们的积的2倍.1.(口答)运用完全平方公式计算:1)(a+2b)22)(-a-2b)23)(m-4n)24)(4n-m)25)(x+5)26)(m-ab)22.怎样计算(a+b+c)2?解:(a+b+c)2=[(a+b)+c]2=(a+b)2+2·(a+b)·c+c2=a2+
8、2ab+c2+2ac+2
此文档下载收益归作者所有