二次函数的最值与根的分布教案

二次函数的最值与根的分布教案

ID:18765294

大小:1.67 MB

页数:10页

时间:2018-09-22

二次函数的最值与根的分布教案_第1页
二次函数的最值与根的分布教案_第2页
二次函数的最值与根的分布教案_第3页
二次函数的最值与根的分布教案_第4页
二次函数的最值与根的分布教案_第5页
资源描述:

《二次函数的最值与根的分布教案》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、做教育做良心中小学1对1课外辅导专家备课教师:刘登骏龙文教育个性化辅导教案提纲学生:日期:年月日第次时段:教学课题二次函数的最值与根的分布----导学案教学目标考点分析1.掌握二次函数的图像及性质2.能够求出二次函数在某个区间上的最值3.能够利用二次函数研究一元二次方程的实根的分布教学重点二次函数、一元二次方程及一元二次不等式之间的灵活转化教学难点二次函数跟的分布及二次函数的应用教学方法讲练结合法、交谈式、启发式教学法教学过程:一、上节课知识点复习回顾及习题疑难解惑二、本次课知识点1.二次函数最值问题:二次函数的区间最值问题,

2、核心是对函数对称轴与给定区间的相对位置关系的讨论.一般分为:对称轴在区间的左边,中间,右边三种情况.设,求在上的最大值与最小值.分析:将配方,得对称轴方程当时,抛物线开口向上若必在顶点取得最小值,离对称轴较远端点处取得最大值;若当时,抛物线开口向上,此时函数在上具有单调性,故在离对称轴较远端点处取得最大值,较近端点处取得最小值.当时,如上,作图可得结论,对二次函数的区间最值结合函数图象总结如下:当时10教育是一项良心工程——深圳龙文教育做教育做良心中小学1对1课外辅导专家备课教师:刘登骏当时2.二次函数零点个数、一元二次方程、

3、一元二次不等式解的情况:的图象()函数的图象()与x轴的交点或函数零点的个数2个1个0个方程的解,无解的解或的解10教育是一项良心工程——深圳龙文教育做教育做良心中小学1对1课外辅导专家备课教师:刘登骏3.一元二次方程()根的分布:根的分布图象充要条件或或或根的分布两根有且仅有一根在内图象充要条件或或三、典型例题A.求二次函数在闭区间上的值域(一)正向型10教育是一项良心工程——深圳龙文教育做教育做良心中小学1对1课外辅导专家备课教师:刘登骏是指已知二次函数和定义域区间,求其最值.对称轴与定义域区间的相互位置关系的讨论往往成为

4、解决这类问题的关键.此类问题包括以下四种情形:(1)轴定,区间定;(2)轴定,区间动;(3)轴动,区间定;(4)轴动,区间动.1.轴定区间定例1.已知函数,当时,求函数f(x)的最大值与最小值.解析:时,所以时,时,.2.轴定区间动例2.求函数在区间上的最小值.解析:对称轴(1)当即时,;(2)当即时,;(3)当即时,3.轴动区间定例3.求函数在上的最大值.解析:函数图象的对称轴方程为,应分,,即,和这三种情形讨论,下列三图分别为(1);由图可知(2);由图可知(3)时;由图可知10教育是一项良心工程——深圳龙文教育做教育做良

5、心中小学1对1课外辅导专家备课教师:刘登骏;即4.轴动区间动例4.已知,求的最小值.解析:将代入u中,得①,即时,②,即时,所以(二)、逆向型是指已知二次函数在某区间上的最值,求函数或区间中的参数值.例5.已知函数在区间上的最大值为4,求实数a的值.解析:(1)若,不合题意.(2)若则由,得;(3)若时,则由,得.综上知或.例6.已知函数在区间上的值域是,求m,n的值.解析:方法一:讨论对称轴中1与的位置关系.①若,则解得②若,则,无解③若,则,无解④若,则,无解10教育是一项良心工程——深圳龙文教育做教育做良心中小学1对1课

6、外辅导专家备课教师:刘登骏综上,方法二:由,知,则,f(x)在上递增.所以解得评注:方法二利用闭区间上的最值不超过整个定义域上的最值,缩小了m,n的取值范围,避开了繁难的分类讨论,解题过程简洁、明了.例7.已知函数的最大值为,求的值.解析:令,问题就转二次函数的区间最值问题.令,,∴,对称轴为,①当,即时,,得或(舍去).②当,即时,函数在单调递增,由,得.③当,即时,函数在单调递减,由,得(舍去).综上可得:的值为或.B.根的分布例8.(1)方程的两根均大于,求实数的范围.(2)方程的两根一者大于,一者小于求实数的范围.(3

7、)方程的两根一者在内,一者在(6,8)内,求实数的范围.解析:令(1)由或得:;(2)由或得:;(3)由得:.10教育是一项良心工程——深圳龙文教育做教育做良心中小学1对1课外辅导专家备课教师:刘登骏例9.关于的方程有实根,求实数的取值范围.解析:令(),原方程有实根等价于方程有正根.令,则恒过点.方法一:得:方法二:要使方程有正根,则方程的较大根大于即可;故由得:例10.关于的方程至少有一个负根,求实数的取值范围.解析:令,恒过点方法一:①时,成立.②时,得:;③时,恒成立;综上可知:.方法二:①时,成立.②时,要使方程至少

8、有一个负根等价于方程的较小根小于即可.故或得;综上可知:.例11.已知函数与非负轴至少有一个交点,求实数的取值范围.解析:方法一:10教育是一项良心工程——深圳龙文教育做教育做良心中小学1对1课外辅导专家备课教师:刘登骏①方程有一个实根是,则得:;②方程有两个正根,则得:;③

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。