15.4因式分解(全)课件

15.4因式分解(全)课件

ID:18752447

大小:1.23 MB

页数:73页

时间:2018-09-22

15.4因式分解(全)课件_第1页
15.4因式分解(全)课件_第2页
15.4因式分解(全)课件_第3页
15.4因式分解(全)课件_第4页
15.4因式分解(全)课件_第5页
资源描述:

《15.4因式分解(全)课件》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、15.4因式分解初级篇第1课时中级篇第23课时高级篇第4课时15.4.1因式分解(初级篇)——因式分解的定义与提公因式法复习回顾口答:问题:630可以被哪些整数整除?解决这个问题,需要对630进行分解质因数630=2×32×5×7类似地,在式的变形中,有时需要将一个多项式写成几个整式的乘积的形式以便于更好的解决一些问题新课引入试试看(将下列多项式写成几个整式的乘积)回忆前面整式的乘法上面我们把一个多项式化成了几个整式的积的形式,像这样的式子变形叫做把这个多项式,也叫做把这个多项式。分解因式因式分解因式分解整式乘法因式分解与整式乘法是逆变

2、形依照定义,判断下列变形是不是因式分解(把多项式化成几个整式的积)创设情景学校打算把操场重新规划一下,分为绿化带、运动场、主席台三个部分,如下图,计算操场总面积。abcmabcm方法一:S=m(a+b+c)方法二:S=ma+mb+mcmm方法一:S=m(a+b+c)方法二:S=ma+mb+mcm(a+b+c)=ma+mb+mc下面两个式子中哪个是因式分解?在式子ma+mb+mc中,m是这个多项式中每一个项都含有的因式,叫做。公因式ma+mb+mc=m(a+b+c)ma+mb+mc=m(a+b+c)在下面这个式子的因式分解过程中,先找到这

3、个多项式的公因式,再将原式除以公因式,得到一个新多项式,将这个多项式与公因式相乘即可。这种方法叫做提公因式法。提公因式法一般步骤:1、找到该多项式的公因式,2、将原式除以公因式,得到一个新多项式,3、把它与公因式相乘。如何准确地找到多项式的公因式呢?1、系数所有项的系数的最大公因数2、字母应提取每一项都有的字母,且字母的指数取最低的3、系数与字母相乘例题精讲最大公因数为3=3a的最低指数为1ab的最低指数为1b(3a–5bc)=–4st2(3s2–2t+1)pq(5q+7p+3)=做一做按照提公因式法因式分解。提高训练(一)提高训练(二

4、)TheEnd15.4.2公式法(中级篇)利用完全平方公式因式分解第3课时利用平方差公式因式分解第2课时15.4.2公式法(中级篇1)——利用平方差公式进行因式分解复习回顾还记得学过的两个最基本的乘法公式吗?平方差公式:完全平方公式:计算:=(999+1)(999–1)此处运用了什么公式?新课引入试计算:9992–112=1000×998=998000平方差公式逆用因式分解:(1)x2–;(2)y2–4252252=(x+2)(x–2)=(y+5)(y–5)这些计算过程中都逆用了平方差公式即:此即运用平方差公式进行因式分解用文字表述为:

5、两个数的平方差等于这两个数的和与这两个数的差的积。尝试练习(对下列各式因式分解):①a2–9=___________________②49–n2=__________________③5s2–20t2=________________④100x2–9y2=_______________(a+3)(a–3)(7+n)(7–n)5(s+2t)(s–2t)(10x+3y)(10x–3y)判断下列各式是否可以运用平方差公式进行因式分解①x2+4②–4x2+y2③x4–1④x2–x6⑤6x3–54xy2⑥(x+p)2–(x–q)2例(1)=y2–

6、4x2=(y+2x)(y–2x)=(x2)2–12=(x2+1)(x2–1)②–4x2+y2③x4–1(x2–1)=–(4x2–y2)=–(2x+y)(2x–y)(x+1)(x–1)将前面②~⑥各式运用平方差公式进行因式分解例(2)因式分解一定要分解彻底!④x2–x6=x2–(x3)2=(x+x3)(x–x3)=x·(1+x2)·x·(1–x2)=x2(1+x2)(1+x)(1–x)将前面②~⑥各式运用平方差公式进行因式分解例(2)④x2–x6=x2(1–x4)=x2(1+x2)(1–x2)=x2(1+x2)(1+x)(1–x)更简便!

7、在我们现学过的因式分解方法中,先考虑提取公因式,再考虑用公式法。⑤6x3–54xy2=6x(x2–9y2)=6x(x+3y)(x–3y)⑥(x+p)2–(x–q)2=[(x+p)+(x–q)]·[(x+p)–(x–q)]=(2x+p–q)(p+q)将前面②~⑥各式运用平方差公式进行因式分解例(2)YXYXYX做一做利用平方差公式因式分解。提高训练(一)④设m、n为自然数且满足关系式12+92+92+22+m2=n2,则m=____,n=____。提高训练(二)3、n是自然数,代入n3–n中计算时,四个同学算出如下四个结果,其中正确的只可

8、能是()。A.421800B.438911C.439844D.428158TheEnd15.4.2公式法(中级篇2)——利用完全平方公式进行因式分解复习回顾还记得前面学的完全平方公式吗?计算:新课引入试计算

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。