欢迎来到天天文库
浏览记录
ID:18605747
大小:74.00 KB
页数:6页
时间:2018-09-19
《2018北师大版高中数学必修三第3章章末综合检测三含解析》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、2018北师大版高中数学必修三第3章章末综合检测三含解析章末综合检测(三)(时间:120分钟,满分:150分)一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.给出下列四个命题:①“三个球全部放入两个盒子,其中必有一个盒子有一个以上的球”是必然事件;②“当x为某一实数时,可使x2≤0”是不可能事件;③“明天天津市要下雨”是必然事件;④“从100个灯泡(含有10个次品)中取出5个,5个全是次品”是随机事件.其中正确命题的个数是( )A.0 B.1C.2D.3解析:选C.①④正确.2.从装有
2、2个红球和2个黑球的口袋内任取2个球,那么互斥而不对立的两个事件是( )A.至少有1个黑球与都是红球B.至少有1个黑球与都是黑球C.至少有1个黑球与至少有1个红球D.恰有1个黑球与恰有2个黑球解析:选D.A中的两个事件是对立事件,不符合要求;B中的两个事件是包含关系,不是互斥事件,不符合要求;C中的两个事件都包含“一个黑球、一个红球”这一事件,不是互斥事件;D中是互斥而不对立的两个事件.故选D.3.某个地区从某年起几年内的新生婴儿数及其中的男婴数如下表:时间范围1年内2年内3年内4年内新生婴儿数554490131352017191男婴数2716489
3、968128590这一地区男婴出生的概率约是( )A.0.4B.0.5C.0.6D.0.7解析:选B.由表格可知,男婴出生的频率依次约为0.49,0.54,0.50,0.50,故这一地区男婴出生的概率约为0.5.故选B.4.某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为( )A.710B.58C.38D.310解析:选B.记“至少需要等待15秒才出现绿灯”为事件A,则P(A)=2540=58.5.为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中
4、,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是( )A.13B.12C.23D.56解析:选C.从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,共有6种选法.红色和紫色的花不在同一花坛的有4种选法,根据古典概型的概率计算公式,所求的概率为46=23.故选C.6.有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为( )A.13B.12C.23D.34解析:选A.因为两位同学参加兴趣小组的所有的结果有9个,其中这两位同学
5、参加同一兴趣小组的结果有3个,所以由古典概型的概率计算公式得所求概率为39=13.7.任取一个三位正整数N,则对数log2N是一个正整数的概率是( )A.1225B.3899C.1300D.1450解析:选C.三位正整数有100~999,共900个,而满足log2N为正整数的N有27,28,29,共3个,故所求事件的概率为3900=1300.8.在长为12cm的线段AB上任取一点C.现作一矩形,邻边长分别等于线段AC,CB的长,则该矩形面积大于20cm2的概率为( )A.16B.13C.23D.45解析:选C.设
6、AC
7、=xcm,0<x<12,则
8、
9、CB
10、=(12-x)cm,要使矩形面积大于20cm2,只要x(12-x)>20,则x2-12x+20<0,2<x<10,所以所求概率为P=10-212=23,故选C.9.小明通过做游戏的方式来确定周末的活动,他随机往单位圆内投掷一颗弹珠(大小忽略),若弹珠到圆心的距离大于12,则周末去逛公园;若弹珠到圆心的距离小于14,则去踢足球;否则,在家看书.则小明周末不在家看书的概率为( )A.12B.16C.1316D.512解析:选C.由题意画出示意图,如图所示.表示小明在家看书的区域如图中阴影部分所示,则他在家看书的概率为π(12)2-π(14)2π=3
11、16,因此他不在家看书的概率为1-316=1316,故选C.10.小莉与小明一起用A,B两枚均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6)玩游戏,以小莉掷的A立方体朝上的数字为x,小明掷的B立方体朝上的数字为y,来确定点P(x,y),那么他们各掷一次所确定的点P(x,y)落在已知抛物线y=-x2+4x上的概率为( )A.16B.19C.112D.118解析:选C.根据题意,两人各掷立方体一次,每人都有6种可能性,则(x,y)的情况有36种,即P点有36种可能,而y=-x2+4x=-(x-2)2+4,即(x-2)2+y=4,易得在
12、抛物线上的点有(2,4),(1,3),(3,3)共3个,因此满足条件的概率为336=112.1
此文档下载收益归作者所有