资源描述:
《2016高中数学人教a版必修一3.1.1《方程的根与函数的零点》word导学案》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、3.1.1方程的根与函数的零点班级:__________姓名:__________设计人__________日期__________课前预习·预习案【温馨寄语】高尚的理想是人生的指路明灯。有了它,生活就有了方向;有了它,内心就感到充实。迈开坚定的步伐,走向既定的目标吧!【学习目标】1.能利用函数图象和性质判断某些函数的零点个数及所在区间.2.掌握判断函数零点的方法.3.了解函数零点的概念,领会函数零点与相应方程的根的关系.【学习重点】通过用二分法求方程的近似解,体会函数的零点与方程根之间的联系,初步形成用函数观点处理问题的意识【学习难点】恰当地使用信息技
2、术工具,利用二分法求给定精确度的方程的近似解【自主学习】1.一元二次方程的根与二次函数的图象的关系(以为例):请观察所给的三个二次函数的图象,完成下表:图(1)图(2)图(3)二次函数图象与轴交点的个数210方程实数根的个数______________________0二次函数零点的个数_________________________________方程的判别式______________________方程的根 ,_____________________无实根2.函数的零点对于函数把使的实数 叫做函数的零点.3.
3、方程的根、函数的零点、函数图象之间的关系方程有实根函数的图象与轴有 函数有 .4.函数零点的判断(1)条件:函数在上,①图象是 的一条曲线.② 0.(2)结论:在区间内有 ,即存在使得 .【预习评价】1.函数的零点是A.1 B.2 C.4 D.-22.函数的零点个数是A.0 B.1 C.2 D.33.函数的零点所在的区间是A.(
4、1,2) B.(-1,-2) C.(0,1) D.(-1,0)4.函数的零点为 .5.已知函数的图象与轴有三个不同的交点,则函数有 个零点.6.已知函数在区间(2,5)上是减函数,且图象是一条连续不断的曲线,则函数在区间(2,5)上零点的个数是 .知识拓展·探究案【合作探究】1.函数的零点结合所学的基本初等函数(如一次函数、二次函数、指数函数、对数函数),思考是否所有的函数都有零点?并说明理由.2.函数零点的判断根据函数零点的判断依据,若函数在区间上的图象是连续不断的一条曲线,且那么函数在区间内
5、存在零点.探究以下问题:(1)若那么函数在区间内一定没有零点吗?(2)若函数在区间上的图象是连续不断的一条曲线,那么函数在区间内有零点一定有吗?(3)若函数在区间上的图象不是连续不断的一条曲线,满足.那么函数在区间内有唯一零点的条件是什么?【教师点拨】1.对函数零点的两点说明(1)函数的零点是一个实数,当函数的自变量取这个实数时,其函数值等于零.(2)由于函数的零点就是方程的实根,因此判断函数是否有零点,有几个零点,就是判断方程是否有实根,有几个实根.2.对函数零点判断的两点说明(1)当函数同时满足:①函数的图象在闭区间上是连续曲线;②则可以判断函数在区
6、间内至少有一个零点.(2)当函数的图象在闭区间上不是连续曲线或不满足时,函数在区间内可能存在零点,也可能不存在零点.【交流展示】1.函数的图象与轴的交点坐标及其零点分别是A.2;2B.(2,0);2C.-2;-2D.(-2,0);-22.函数的零点是A.±3B.(3,0)和(-3,0)C.3D.-33.若函数在区间上的图象为一条连续不断的曲线,则下列说法正确的是A.若,则不存在实数使得B.若,则存在且只存在一个实数使得C.若,则有可能存在实数使得D.若,则有可能不存在实数使得4.设函数的零点为,则所在区间是A.(0,1)B.(1,2)C.(2,3)D.(
7、3,4)5.函数的一个零点比1大,另一个零点比1小,则实数的限值范围是 .6.已知关于的一元二次方程有两个不相等的实数根,其中一根在区间(-1,0)内,另一根在区间(1,2)内,求的取值范围.【学习小结】1.求函数零点的两种方法(1)代数法:求相应方程的实数根.(2)几何法:对于方程的根不易求解时,或者只探究函数零点的个数问题,可以通过将方程的根转化为函数的图象与轴交点的横坐标问题.2.判断函数存在零点的三种方法(1)方程法:若方程的解可求或能判断解的个数,可通过方程的解来判断函数是否存在零点或判断零点的个数.(2)图象法:
8、由得在同一坐标系内作出和的图象,根据两个图象交点的个数来判定函数零点的个数.(3