欢迎来到天天文库
浏览记录
ID:18181339
大小:151.50 KB
页数:6页
时间:2018-09-15
《高中数学 2.3 变量间的相关关系素材2 新人教a版必修3》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、变量间的相关性——知识导学一、课标要求1.通过收集现实问题中两个有关联变量的数据作出散点图,并利用散点图直观认识变量间的相关关系;2.经历用不同估算方法描述两个变量线性相关的过程,知道最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程。二、要点清点(一)变量间的相关关系1.变量间的相关关系变量与变量之间的关系常见的有两类:一类是确定性的函数关系;另一类是变量间确实存在关系,但又不具备函数关系所要求的确定性,它们的关系是带有随机性的,此时我们称两个变量具有相关关系。注:相关关系与函数关系的异同点:(1)相同点:两者均是指两个变
2、量的关系。(2)不同点:①函数关系是一种确定的关系;相关关系是一种非确定的关系。②函数关系是一种因果关系,而相关关系不一定是因果关系,也可能是伴随关系。2.散点图把两个变量作为横、纵坐标,在平面直角坐标系中描点作出两个变量的对应点,这样的图形叫做散点图。注:散点图中变量的对应点如果分布在某条直线的周围,我们就可以得出结论:这两个变量具有相关关系;如果变量的对应点分布没有规律,我们就可以得出结论:这两个变量不具有相关关系。3.正相关、负相关具有相关关系的两个变量,如果一个变量的值由小变大时,另一个变量的值也由小变大,这种相关称为正相关;反之,
3、如果一个变量的值由小变大时,另一个变量的值由大变小,这种相关称为负相关。(二)两个变量的线性相关1.线性相关、回归直线如果散点图中,相应于具有相关关系的两个变量所有观察值的数据点,分布在一条直线附近,我们就称这两个变量之间具有线性相关关系,这样的直线可以画出许多条,其中“最贴近”这些数据点的一条,我们称之为回归直线。2.用最小二乘法求回归直线方程。记回归直线方程为,,叫做回归系数。利用最小二乘法可以求得回归系数:,。其中,。注:(1)我们知道,回归直线是数据点最贴近的直线,反映贴近程度的数据是离差的平方和,即总离差,这样,回归直线就是所有直
4、线中取最小值的那一条,这种使“离差平方和为最小”的方法,叫做最小二乘法。(2)利用最小二乘法求回归系数,时,是将离差的平方和转化为关于或的二次函数,利用二次函数知识求得的。3.求回归直线方程的步骤(1)作出给出数据的散点图,并直观地判断是否是线性相关的;(2)求出,;(3)求出,;(4)求出和,写出回归直线方程。4.回归直线方程的应用(1)描述两变量之间的依存关系:利用回归直线方程即可定量描述两个变量间依存的数量关系;(2)利用回归方程进行预测:把预报因子(即自变量)代入回归方程对预报量(即因变量)进行估计,即可得到个体值的容许区间。(3)
5、利用回归方程进行统计控制规定值的变化,通过控制的范围来实现统计控制的目标。如已经得到了空气中的浓度和汽车流量间的回归方程,即可通过控制汽车流量来控制空气中的浓度。5.利用散点图和回归直线方程的注意事项(1)做回归分析要有实际意义;(2)回归分析前,最好先作出散点图,以判断是否是线性相关关系;(3)回归直线不要外延。三、范例剖析例1下列两个变量之间的关系不具有线性关系的是().小麦产量与施肥值.球的体积与表面积.蛋鸭产蛋个数与饲养天数.甘蔗的含糖量与生长期的日照天数分析:设球的半径为,则球的体积为,球的表面积,显然这两者不是线性关系。解析:评
6、注:线性关系是一种函数关系,因此具有确定性。本题中的两者之间有相关关系,但不具有线性关系。例2要分析学生初中升学的数学成绩对高一学习情况的影响,在高一年级学生中随机抽取了10名学生,他们的入学成绩与期末考试成绩如下表:学生编号12345678910入学成绩63674588817152995876期末成绩65785282928973985675(1)若变量与之间具有线性相关关系,求出回归直线方程;(2)若某学生的入学成绩为80分,试估计他的期末成绩。解析:(1),。∴,,∴所求线性回归直线方程为。(2)某学生的入学成绩为80分,代入上式可求得
7、,即这个学生期末成绩的预测值为84分。评注:知道与呈线性相关关系,无须进行相关性检验。否则,应首先进行相关性检验,如果本身两个变量不具备相关关系,或者说,它们之间相关关系不显著,即使求出回归直线方程也是毫无意义的,而且用其估计和预测的量也是不可信的。例3下表是我国居民生活污水排放量的一组数据:年份19951996199719981999200020012002排放量151189.1194.8203.8220.9227.7232.3试估计1996年我国居民生活污水的排放量,并预测2004年生活污水的排放量(单位:)。分析:要估计或预测,可考虑
8、先求回归直线方程,将年份与污水的排放量的相关关系表达出来,可先剔除1996年,样本容量为7。解析:设1995年为第1年,…2002年为第8年,列表,用科学计算器进行有关计算:12
此文档下载收益归作者所有