high-order adaptive and paralleldiscontinuous galerkin m:高阶自适应paralleldiscontinuous galerkin m

high-order adaptive and paralleldiscontinuous galerkin m:高阶自适应paralleldiscontinuous galerkin m

ID:18045539

大小:1.26 MB

页数:41页

时间:2018-09-13

high-order adaptive and paralleldiscontinuous galerkin m:高阶自适应paralleldiscontinuous galerkin m_第1页
high-order adaptive and paralleldiscontinuous galerkin m:高阶自适应paralleldiscontinuous galerkin m_第2页
high-order adaptive and paralleldiscontinuous galerkin m:高阶自适应paralleldiscontinuous galerkin m_第3页
high-order adaptive and paralleldiscontinuous galerkin m:高阶自适应paralleldiscontinuous galerkin m_第4页
high-order adaptive and paralleldiscontinuous galerkin m:高阶自适应paralleldiscontinuous galerkin m_第5页
资源描述:

《high-order adaptive and paralleldiscontinuous galerkin m:高阶自适应paralleldiscontinuous galerkin m》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、High-OrderAdaptiveandParallel DiscontinuousGalerkinMethods forHyperbolicConservationLawsJ.E.Flaherty,L.Krivodonova,J.F.Remacle,andM.S.ShephardScientificComputationResearchCenterDiscontinuousGalerkinMethodArbitraryorder:extendsfinitevolumemethodStructuredorunstructuredmeshesNoneedfor

2、inter-elementcontinuitySimplifiesadaptiveh-andp-refinementDiscontinuousGalerkinMethodFace-basedcommunicationSimplifiesparallelcomputationSharpcapturingofdiscontinuitiesElementlevelconservationAposteriorierrorestimatesDiscontinuousGalerkinMethodFace-basedcommunicationSimplifiesparall

3、elcomputationSharpcapturingofdiscontinuitiesElementlevelconservationAposteriorierrorestimatesHowever:MoremeshunknownsthanFEMforsameorderPossiblyOKwithparallelcomputationMonotonictycontrol(limiting)isdifficultDGFormulationConservationlawConstructaGalerkinproblemonjcf.CockburnandShu(

4、1989)DGSolutionSolvingtheGalerkinproblemIntegralevaluationTimeintegrationFluxevaluation,limitingApproximationHigherorderequationsDiscontinuousapproximationsneedsregularizationforgradientsExampleApproximationuUjPjpL2(j)OrthogonalbasisTimeIntegrationExplicitRunge-KuttaTVBmethodofC

5、ockburnandShu(1989)Localtimestepping,Remacleetal.(2002)xtFluxEvaluationApproximatefn(Uj)byanumericalfluxFn(Uj,Unbj)DefineFn(Uj,Unbj)byaRiemannproblemPossibilities:Upwind:fluxfrominflowneighborLax-Friedrichs:

6、max

7、isthemaximumabsoluteeigenvalueoffuRoe:linearizedRiemannproblemvanLeer:

8、fluxvectorsplittingColella-Woodward:contactsurfaceresolutionLimitingLimiting:suppressspuriousoscillationswhenp>0whilemaintainingorderSlopelimiter:CockburnandShu(1989)Curvaturelimiter:Barth(1990)Momentlimiter:Biswasetal.(1994)Filtering:Gottliebetal.(1999)Norobustproceduresformulti-di

9、mensionalsituationsSlopevs.MomentLimitingSlopeLimitingMomentLimitingKinematicwaveequation:ut+ux=0p=2SuperconvergenceOne-dimensionalconservationlawSuperconvergenceatRadaupointsAdjeridetal.(1995)Biswasetal.(1994)SuperconvergenceTheorem:Ifp>0,thespatialdiscretizationerroroftheDGmethodw

10、ithUjPpon[xj-1,xj]

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。