欢迎来到天天文库
浏览记录
ID:17966228
大小:1.43 MB
页数:22页
时间:2018-09-11
《备战2014高考数学真题集锦:《组合体》》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、【三年真题重温】1.【2011新课标全国理,15】已知矩形的顶点都在半径为4的球的球面上,且,,则棱锥的体积为.2.【2011新课标全国文,16】已知两个圆锥有公共底面,且两个圆锥的顶点和底面的圆周都在同一个球面上.若圆锥底面面积是这个球面面积的,则这两个圆锥中,体积较小者的高与体积较大者的高的比值为.3.【2010新课标全国理,10】设三棱柱的侧棱垂直于底面,所有棱长都为,顶点都在一个球面上,则该球的表面积为(A)(B)(C)(D)4.【2010新课标全国文,7】设长方体的长、宽、高分别为2a、a、a,其顶点都在一个球面上,则该球的表面积为(A)3a2(
2、B)6a2(C)12a2(D)24a25.【2012新课标全国理】已知三棱锥的所有顶点都在球的求面上,是边长为的正三角形,为球的直径,且;则此棱锥的体积为()6.【2012新课标全国文】平面α截球O的球面所得圆的半径为1,球心O到平面α的距离为,则此球的体积为(A)π(B)4π(C)4π(D)6π【命题意图猜想】1.2011年理科高考是四棱锥和球的组合体,文科是圆锥和球的组合体,2010年理科考查的是三棱柱与球的组合体,文科考查的是长方体与球的组合体.2012年理科考查了三棱锥与球的组合体,试题难度较去年增大,文科只是简单考查了单一的几何体球的计算问题.从
3、整体上看,试题难度理科较文科大,均需要学生有较强的画图能力和空间想象能力.并且均与球的外接或内切紧密联系到一起,猜想2013年高考试题不会逃离两个几何体的组合,且与球的组合体仍然是一个热点,以一种新颖的几何体的形态出现,考查几何体的体积或表面积.2.从近几年的考试题来看,空间几何体的表面积、体积等问题是高考的热点,题型既有选择题、填空题,又有解答题,难度为中、低档.客观题主要考查由三视图得出几何体的直观图,求其表面积、体积或由几何体的表面积、体积得出某些量;主观题考查较全面,考查线、面位置关系,及表面积、体积公式,无论是何种题型都考查学生的空间想象能力.预
4、测2013年高考仍将以空间几何体的表面积、体积为主要考查点,重点考查学生的空间想象能力、运算能力及逻辑推理能力.【最新考纲解读】(1)认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.(2)了解球、棱柱、棱锥、台的表面积和体积的计算公式(不要求记忆).【回归课本整合】3.球(1)球的概念:与定点距离等于或小于定长的点的集合,叫做球体;与定点距离等于定长的点的集合叫做球面.(2)球的截面:用一平面去截一个球,设是平面的垂线段,为垂足,且,所得的截面是以球心在截面内的射影为圆心,以为半径的一个圆,截面是一个圆面.球面被经
5、过球心的平面截得的圆叫做大圆,被不经过球心的平面截得的圆叫做小圆(3)球的表面积公式:.4.棱柱、棱锥与球的体积(1)棱柱:体积=底面积×高,或体积=直截面面积×侧棱长,特别地,直棱柱的体积=底面积×侧棱长;三棱柱的体积(其中为三棱柱一个侧面的面积,为与此侧面平行的侧棱到此侧面的距离)(2)棱锥:体积=×底面积×高.(3)球的体积公式:.①平行于底面的截面都是圆;②过轴的截面(轴截面)是全等的矩形.除了这两条重要特征外,还应掌握下面的一些重要属性.①所有的轴截面是以两底面直径和两条母线为边的全等矩形,若该矩形为正方形,则圆柱叫等边圆柱.②用平行于轴的平面去
6、截圆柱,所得的截面是以底面圆的弦和两条母线为边的矩形.也就是说过圆柱任意两条母线的截面一定是一个矩形,在这所有的截面矩形中,以轴截面面积最大.(3)圆锥的结构特征①平行于底面的截面都是圆;②过轴的截面(轴截面)是全等的等腰三角形;③过圆锥两条母线的截面.当轴截面的顶角不大于90°时,轴截面面积最大;当轴截面顶角大于90°时,两母线垂直时截面面积最大.(4)圆台的结构特征①平行于底面的截面都是圆;②过轴的截面是全等的等腰梯形.2.正方体与球(1)正方体的内切球:截面图为正方形EFGH的内切圆,如图所示.设正方体的棱长为,则.1.求体积常见技巧当给出的几何体比
7、较复杂,有关的计算公式无法运用,或者虽然几何体并不复杂,但条件中的已知元素彼此离散时,我们可采用“割”、“补”的技巧,化复杂几何体为简单几何体(柱、锥、台),或化离散为集中,给解题提供便利.(1)几何体的“分割”:几何体的分割即将已知的几何体按照结论的要求,分割成若干个易求体积的几何体,进而求之.(2)几何体的“补形”:与分割一样,有时为了计算方便,可将几何体补成易求体积的几何体,如长方体、正方体等.另外补台成锥是常见的解决台体侧面积与体积的方法,由台体的定义,我们在有些情况下,可以将台体补成锥体研究体积.(3)有关柱、锥、台、球的面积和体积的计算,应以公
8、式为基础,充分利用几何体中的直角三角形、直角梯形求有关的几何元素.
此文档下载收益归作者所有