欢迎来到天天文库
浏览记录
ID:17906969
大小:294.50 KB
页数:12页
时间:2018-09-09
《6.2二次函数的图象和性质(1)》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、§6.2二次函数的图象和性质(1)教学目标:经历探索二次函数y=x2的图象的作法和性质的过程,获得利用图象研究二次函数性质的经验.掌握利用描点法作出y=x2的图象,并能根据图象认识和理解二次函数y=x2的性质.能够作为二次函数y=-x2的图象,并比较它与y=x2图象的异同,初步建立二次函数表达式与图象之间的联系.教学重点:利用描点法作出y=x2的图象过程中,理解掌握二次函数y=x2的性质,这是掌握二次函数y=ax2+bx+c(a≠0)的基础,是二次函数图象、表达式及性质认识应用的开始.要注意图象的特点.教学难点:函数图象的画法,及由图象概括出二次函数y=x2性质,它难在由图象概括性质,结合
2、图象记忆性质.教学过程:一、作二次函数y=x的图象。二、议一议:1.你能描述图象的形状吗?与同伴交流。2.图象与x轴有交点吗?如果有,交点的坐标是什么?3.当x<0时,y随着x的增大,y的值如何变化?当x>0时呢?4.当x取什么值时,y的值最小?5.图象是轴对称图形吗?如果是,它的对称轴是什么?请你找出几对对称点,并与同伴交流。三、y=x的图象的性质:三、例题:【例1】求出函数y=x+2与函数y=x2的图象的交点坐标.【例2】已知a<-1,点(a-1,y1)、(a,y2)、(a+1,y3)都在函数y=x2的图象上,则()A.y1<y2<y3B.y1<y3<y2C.y3<y2<y1D.y2<
3、y1<y3四、练习1.函数y=x2的顶点坐标为.若点(a,4)在其图象上,则a的值是.2.若点A(3,m)是抛物线y=-x2上一点,则m=.3.函数y=x2与y=-x2的图象关于对称,也可以认为y=-x2,是函数y=x2的图象绕旋转得到.五:小结1、 我们通过观察总结得出二次函数y=ax2的图象的一些性质:①、图象——“抛物线”是轴对称图形;②、与x、y轴交点——(0,0)即原点;③、a的绝对值越大抛物线开口越大,a﹥0,开口向上,当x﹤0时,(对称轴左侧),y随x的增大而减小(y随x的减小而增大)当x﹥0时,(对称轴右侧),y随x的增大而增大(y随x的减小而减小) a﹤0,开口向下,
4、当x﹤0时,(对称轴左侧),y随x的增大而增大(y随x的减小而减小)当x﹥0时,(对称轴右侧),y随x的增大而减小(y随x的减小而增大)(2)今天我们通过观察收获不小,其实只要我们在日常生活中勤与观察,勤与思考,你会发现知识无处不在,美无处不在。六、作业:(补充练习)1.若二次函数y=ax2(a≠0),图象过点P(2,-8),则函数表达式为.2.函数y=x2的图象的对称轴为,与对称轴的交点为,是函数的顶点.3.点A(,b)是抛物线y=x2上的一点,则b=;点A关于y轴的对称点B是,它在函数上;点A关于原点的对称点C是,它在函数上.4.求直线y=x与抛物线y=x2的交点坐标.5.若a>1,点
5、(-a-1,y1)、(a,y2)、(a+1,y3)都在函数y=x2的图象上,判断y1、y2、y3的大小关系?6.如图,A、B分别为y=x2上两点,且线段AB⊥y轴,若AB=6,则直线AB的表达式为()A.y=3B.y=6C.y=9D.y=36§6.2二次函数的图象和性质(2)教学目标:1.经历探索二次函数y=ax2和y=ax2+c的图象的作法和性质的过程,进一步获得将表格、表达式、图象三者联系起来的经验.2.会作出y=ax2和y=ax2+c的图象,并能比较它们与y=x2的异同,理解a与c对二次函数图象的影响.3.能说出y=ax2+c与y=ax2图象的开口方向、对称轴和顶点坐标.4.体会二次
6、函数是某些实际问题的数学模型.教学重点:二次函数y=ax2、y=ax2+c的图象和性质,因为它们的图象和性质是研究二次函数y=ax2+bx+c的图象和性质的基础.我们在教学时结合图象分别从开口方向、对称轴、顶点坐标、最大(小值)、函数的增减性几个方面记忆分析.教学难点:由函数图象概括出y=ax2、y=ax2+c的性质.根据函数图象联想函数性质,由性质来分析函数图象的形状和位置.教学方法:类比教学法。教学过程:一、复习:二次函数y=x2与y=-x2的性质:抛物线y=x2y=-x2对称轴顶点坐标开口方向位置增减性最值二、问题引入:你知道两辆汽车在行驶时为什么要保持一定距离吗?刹车距离与什么因素
7、有关?有研究表明:汽车在某段公路上行驶时,速度为v(km/h)汽车的刹车距离s(m)可以由公式:晴天时:;雨天时:,请分别画出这两个函数的图像:三、动手操作、探究:1.在同一平面内画出函数y=2x2与y=2x2+1的图象。2.在同一平面内画出函数y=3x2与y=3x2-1的图象。比较它们的性质,你可以得到什么结论?四、例题:【例1】已知抛物线y=(m+1)x开口向下,求m的值.【例2】k为何值时,y=(k+2)x是关于x
此文档下载收益归作者所有