欢迎来到天天文库
浏览记录
ID:17679767
大小:939.50 KB
页数:22页
时间:2018-09-04
《热力学统计物理习题》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、1.2证明任何一种具有两个独立参量的物质,其物态方程可由实验测得的体胀系数及等温压缩系数,根据下述积分求得:如果,试求物态方程。解:以为自变量,物质的物态方程为其全微分为 (1)全式除以,有根据体胀系数和等温压缩系数的定义,可将上式改写为(2)上式是以为自变量的完整微分,沿一任意的积分路线积分,有(3)若,式(3)可表为(4)选择图示的积分路线,从积分到,再积分到(),相应地体积由最终变到,有即(常量),或 (5)式(5)就是由所给求得的物态方程。确定常量C需要进一步的实验数据。1.3在和1下,测得一铜块的体胀系数和等温压缩系数
2、分别为可近似看作常量,今使铜块加热至。问:(a)压强要增加多少才能使铜块的体积维持不变?(b)若压强增加100,铜块的体积改变多少?解:(a)根据1.2题式(2),有 (1)上式给出,在邻近的两个平衡态,系统的体积差,温度差和压强差之间的关系。如果系统的体积不变,与的关系为 (2)在和可以看作常量的情形下,将式(2)积分可得 (3)将式(2)积分得到式(3)首先意味着,经准静态等容过程后,系统在初态和终态的压强差和温度差满足式(3)。但是应当强调,只要初态和终态是平衡态,两态间的压强差和温度差就满足式(3)。这是因为,平衡状态的
3、状态参量给定后,状态函数就具有确定值,与系统到达该状态的历史无关。本题讨论的铜块加热的实际过程一般不会是准静态过程。在加热过程中,铜块各处的温度可以不等,铜块与热源可以存在温差等等,但是只要铜块的初态和终态是平衡态,两态的压强和温度差就满足式(3)。将所给数据代入,可得因此,将铜块由加热到,要使铜块体积保持不变,压强要增强(b)1.2题式(4)可改写为 (4)将所给数据代入,有因此,将铜块由加热至,压强由增加,铜块体积将增加原体积的倍。1.12假设理想气体的是温度的函数,试求在准静态绝热过程中的关系,该关系式中要用到一个函数,其表达式为
4、解:根据式(1.8.1),理想气体在准静态绝热过程中满足(1)用物态方程除上式,第一项用除,第二项用除,可得 (2)利用式(1.7.8)和(1.7.9),可将式(2)改定为(3)将上式积分,如果是温度的函数,定义 (4)可得(常量), (5)或(常量)。 (6)式(6)给出当是温度的函数时,理想气体在准静态绝热过程中T和V的关系。1.14试根据热力学第二定律证明两条绝热线不能相交。解:假设在图中两条绝热线交于点,如图所示。设想一等温线与两条绝热线分别交于点和点(因为等温线的斜率小于绝热线的斜率,这样的等温线总是存在的),则在循环过程
5、中,系统在等温过程中从外界吸取热量,而在循环过程中对外做功,其数值等于三条线所围面积(正值)。循环过程完成后,系统回到原来的状态。根据热力学第一定律,有。这样一来,系统在上述循环过程中就从单一热源吸热并将之完全转变为功了,这违背了热力学第二定律的开尔文说法,是不可能的。因此两条绝热线不可能相交。1.15热机在循环中与多个热源交换热量,在热机从其中吸收热量的热源中,热源的最高温度为,在热机向其放出热量的热源中,热源的最低温度为,试根据克氏不等式证明,热机的效率不超过解:根据克劳修斯不等式(式(1.13.4)),有 (1)式中是热机从温
6、度为的热源吸取的热量(吸热为正,放热为负)。将热量重新定义,可将式(1)改写为 (2)式中是热机从热源吸取的热量,是热机在热源放出的热量,,恒正。将式(2)改写为 (3)假设热机从其中吸取热量的热源中,热源的最高温度为,在热机向其放出热量的热源中,热源的最低温度为,必有故由式(3)得 (4)定义为热机在过程中吸取的总热量,为热机放出的总热量,则式(4)可表为 (5)或 (6)根据热力学第一定律,热机在循环过程中所做的功为 热机的效率为 (7)1.1810A的电流通过一个的电阻器,历时1s。(a)若电阻器保持为室温,试求电阻
7、器的熵增加值。(b)若电阻器被一绝热壳包装起来,其初温为,电阻器的质量为10g,比热容为问电阻器的熵增加值为多少?解:(a)以为电阻器的状态参量。设想过程是在大气压下进行的,如果电阻器的温度也保持为室温不变,则电阻器的熵作为状态函数也就保持不变。(b)如果电阻器被绝热壳包装起来,电流产生的焦耳热将全部被电阻器吸收而使其温度由升为,所以有故电阻器的熵变可参照§1.17例二的方法求出,为2.2 设一物质的物态方程具有以下形式:试证明其内能与体积无关.解:根据题设,物质的物态方程具有以下形式:(1)故有(2)但根据式(2.2.7),有 (3)
8、所以 (4)这就是说,如果物质具有形式为(1)的物态方程,则物质的内能与体积无关,只是温度T的函数.2.3 求证: 解:焓的全微分为(1)令,得(2)内能的全微分为(3)令,得(4)2.4 已知,求证解
此文档下载收益归作者所有