资源描述:
《三角函数性和e指数形式的傅里叶变换》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、三角级数、傅里叶级数对于所有在以2pi为周期的函数f(x),可以用一组如下的三角函数系将其展开:1,cosx,sinx,cox2x,sin2x,……,coxnx,sinnx,……显然,这组基在[-pi,pi]上是正交的,因此可以在周期区间求积分获得函数f(x)在以三角函数系为基的展开系数,或者说以三角函数系为坐标的投影值a0,an,bn……一个一般的函数f(x)可以表示为奇函数和偶函数的叠加,因此它的展开既含有正弦项又含有余弦项,但偶函数的展开仅含有常数项a0和正弦项,相似的,奇函数展开仅含有余弦项。 傅里叶级数的复数形式根据欧拉公式e^
2、jx=cosx+jsinx,任意正弦、余弦项可以用复指表示,即cosx=(e^jx+e^-jx)/2,sinx=(e^jx-e^-jx)/2j。所以,任何一个周期函数f(x)既可以在三角函数系上表出也可以在复指数系1,e^jx,……,e^jnx上表出,在不同的坐标系之间,存在映射关系。但重要的是,由于积分变换的核函数形式发生改变,其物理意义也将有所变化。由于复数的引入,每一个复指数e^jnx相对于三角函数系都变为一个二维量,其物理含义是一条三维螺旋线。其道理非常简单,一个实参a表示数轴上的一点,而一个复数a+bj表示二维坐标上的一点,所以
3、cosx,sinx分别表示otherstaffoftheCentre.Duringthewar,ZhuwastransferredbacktoJiangxi,andDirectorofthenewOfficeinJingdezhen,JiangxiCommitteeSecretary.Startingin1939servedasrecorderoftheWestNorthOrganization,SecretaryoftheSpecialCommitteeAfterthevictoryofthelongMarch,hehasbeenthe
4、NorthwestOfficeoftheFederationofStateenterprisesMinister,ShenmufuguSARmissions,DirectorofNingxiaCountypartyCommitteeSecretaryandrecorderoftheCountypartyCommitteeSecretary,Ministersand一条二维曲线,而e^jx=cosx+jsinx是一条空间三维曲线。 傅里叶变换周期信号用傅里叶级数表示,非周期信号可以借助傅里叶变换进行.对实信号做傅立叶变换时,如果按指数e^
5、jωt为核来求,我们将得到双边频谱。以角频率为Ω的余弦信号为例,它有具有位于±Ω两处的,幅度各为0.5,相角为零的频率特性。实际上,COSΩt就是e^jΩt与e^j-Ωt两条螺旋线的叠加,他们虚部刚好对消,只剩下实部。Ω1与Ω2两个角速度的螺旋线坐标值的叠加并不等于角速度Ω1+Ω2,因为从角速度到螺旋线的映射不是线性关系。这一现象正体现了频率的正交特性,也是频率分析理论存在的基础.经过傅立叶变换得到的负频率表示一条反向旋转的螺旋线,而复频率表示一条整体改变90度相位的螺旋线,它们分别与正频率,实频相对应,都表示一个特定的螺旋线,并没有玄妙
6、的含义。 连续频谱周期信号用傅里叶级数展开所获得频率线状谱的物理意义十分明确,即整个信号由所有谱线存在处频率分量叠加而成.比如信号COSΩt对应Ω与-Ω处两根谱线.otherstaffoftheCentre.Duringthewar,ZhuwastransferredbacktoJiangxi,andDirectorofthenewOfficeinJingdezhen,JiangxiCommitteeSecretary.Startingin1939servedasrecorderoftheWestNorthOrganization,Sec
7、retaryoftheSpecialCommitteeAfterthevictoryofthelongMarch,hehasbeentheNorthwestOfficeoftheFederationofStateenterprisesMinister,ShenmufuguSARmissions,DirectorofNingxiaCountypartyCommitteeSecretaryandrecorderoftheCountypartyCommitteeSecretary,Ministersand 困难的问题是对连续谱的理解.以下为标准
8、的傅里叶变换对:由于存在关系式:e^j-wt=cos-wt+j*sin-wt,再联想一个信号在三角函数系上的展开,可以认为上述傅里叶变换的意义是得到信号x(t)实部的cos-wt系数以及x(t