资源描述:
《三角函数性和e指数形式的傅里叶变换》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、三角级数、傅里叶级数对于所有在以2pi为周期的函数f(x),可以用一组如下的三角函数系将其展开:1,cosx,sinx,cox2x,sin2x,……,coxnx,sinnx,……显然,这组基在[-pi,pi]上是正交的,因此可以在周期区间求积分获得函数f(x)在以三角函数系为基的展开系数,或者说以三角函数系为坐标的投影值a0,an,bn……一个一般的函数f(x)可以表示为奇函数和偶函数的叠加,因此它的展开既含有正弦项又含有余弦项,但偶函数的展开仅含有常数项a0和正弦项,相似的,奇函数展开仅含有余弦项。 傅里叶级数的复数形式根据欧拉公式e^jx=cosx+jsinx
2、,任意正弦、余弦项可以用复指表示,即cosx=(e^jx+e^-jx)/2,sinx=(e^jx-e^-jx)/2j。所以,任何一个周期函数f(x)既可以在三角函数系上表出也可以在复指数系1,e^jx,……,e^jnx上表出,在不同的坐标系之间,存在映射关系。但重要的是,由于积分变换的核函数形式发生改变,其物理意义也将有所变化。由于复数的引入,每一个复指数e^jnx相对于三角函数系都变为一个二维量,其物理含义是一条三维螺旋线。其道理非常简单,一个实参a表示数轴上的一点,而一个复数a+bj表示二维坐标上的一点,所以cosx,sinx分别表示一条二维曲线,而e^jx=
3、cosx+jsinx是一条空间三维曲线。 傅里叶变换周期信号用傅里叶级数表示,非周期信号可以借助傅里叶变换进行.对实信号做傅立叶变换时,如果按指数e^jωt为核来求,我们将得到双边频谱。以角频率为Ω的余弦信号为例,它有具有位于±Ω两处的,幅度各为0.5,相角为零的频率特性。实际上,COSΩt就是e^jΩt与e^j-Ωt两条螺旋线的叠加,他们虚部刚好对消,只剩下实部。Ω1与Ω2两个角速度的螺旋线坐标值的叠加并不等于角速度Ω1+Ω2,因为从角速度到螺旋线的映射不是线性关系。这一现象正体现了频率的正交特性,也是频率分析理论存在的基础.经过傅立叶变换得到的负频率表示一条
4、反向旋转的螺旋线,而复频率表示一条整体改变90度相位的螺旋线,它们分别与正频率,实频相对应,都表示一个特定的螺旋线,并没有玄妙的含义。 连续频谱周期信号用傅里叶级数展开所获得频率线状谱的物理意义十分明确,即整个信号由所有谱线存在处频率分量叠加而成.比如信号COSΩt对应Ω与-Ω处两根谱线. 困难的问题是对连续谱的理解.以下为标准的傅里叶变换对:由于存在关系式:e^j-wt=cos-wt+j*sin-wt,再联想一个信号在三角函数系上的展开,可以认为上述傅里叶变换的意义是得到信号x(t)实部的cos-wt系数以及x(t)虚部的sin-wt系数.又由于cos的偶函数性
5、质,sin的奇函数性质以及j*j=-1这一定义,对于某一个特定的w',出现在变换式左边的将是x(t)实部的cosw't系数以及x(t)虚部的sinw't系数,两者的加和显然可以用e^jwt的系数表示. 假如直接以几何意义来思考,为什么傅里叶变换式两端正负号不一致,也很有趣.回到三角函数展开,在周期[-pi,pi]上,只有coswx与coswx的乘积不为零,这也是正交性.而在三维空间中,一条螺旋线与它自身的乘积再做积分却是零,非要与它每一点的共轭值相乘才不为零.造成这种形式不统一的根源,可以认为一维是一种特例,而二维是较普遍的表达,也可以认为实数的共轭是它本身,而复
6、数共轭虚部相反. 连续频谱意义 现在来看连续谱线的含义,它与概率密度函数一样,只有相对的意义,也就是说,在频谱上高度相同的两点,只表示这两点含对应频率给信号的贡献相同,而无法得出任一频率分量本身的能量.这与概率密度函数是相同的,任何一点的概率取值都是零,但概率密度函数曲线相同高度处代表可能性相同.出现这一问题的根源可能是微积分,或者说是"极限"带来的困绕,因为物理世界中,时间,能量,都有最小量值,不可再分.那么,我们可以仅仅把微积分看作只是一种数学处理,对微小离散累加的近似.因此连续谱线可以理解成相当多,相当细密离散谱线束的近似,但每一根离散谱线的高度值并非其对信
7、号的贡献,仅仅表示一个相对的意义.依然可以借助概率密度函数的意义来理解,离散分布律对应的概率线,线有多高,随机变量取值就有多大可能性,在连续概率密度函数中,假如化为微小离散的分布律线,将不再是原来的高度,而应该用该值微笑领域内与原连续曲线所围面积来替代其高度,这一理解与从频谱回到信号的傅里叶变反换是吻合的. 为了便于理解,我们重新叙述整个问题:1,对于周期信号,由于其由多个三角函数线性叠加而成,而三角函数本身又具有正交性,那么通过如下的运算:即任何基函数与原信号相乘后做区间积分,就可以得到任意特定基函数在区间平方后曲线所围面积与该基在原信号中加权系数之积.显然,要
8、把基函数平