欢迎来到天天文库
浏览记录
ID:16559613
大小:81.50 KB
页数:3页
时间:2018-08-22
《论文资料:浅析高考题中求离心率的策略》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、高考资源网(ks5u.com)您身边的高考专家浅析高考题中求离心率的策略重庆慕泽刚求圆锥曲线的离心率近几年来在高考中都有题目出现.为此,本文结合高考题,介绍求圆锥曲线的离心率的几种常用方法,以达到更好地理解和掌握解此类题的技巧和规律,提高分析问题和解决问题的能力.一、根据条件先求出a,c,利用e=求解例1若椭圆经过原点,且焦点为F1(1,0),F2(3,0),则其离心率为()A.B.C.D.解析:由F1、F2的坐标知2c=3﹣1,∴c=1,又∵椭圆过原点,∴a﹣c=1,a+c=3,∴a=2,c=1,所以离心率e==.故选C.例2如果双曲线的实半轴长为2,焦距为6
2、,那么双曲线的离心率为()A.B.C.D2解析:由题设a=2,2c=6,则c=3,e==,因此选C二、根据圆锥曲线的统一定义求解图1例3设椭圆+=1(a>b>0)的右焦点为F1,右准线为l1,若过F1且垂直于x轴的弦的长等于点F1到l1的距离,则椭圆的离心率是.解析:如图1所示,AB是过F1且垂直于x轴的弦,∵AD⊥l1于D,∴
3、AD
4、为F1到准线l1的距离,根据椭圆的第二定义,e===,即e=.故填.三、构建关于a,c的齐次等式求解例4设双曲线﹣=1(05、A.2B.C.D.解析:由已知,直线L的方程为bx+ay-ab=0.由点到直线的距离公式,得=c,又c2=a2+b2,∴4ab=c2,两边平方,得16a2(c2﹣a2)=3c4.两边同除以a4,并整理,得3e4-16e2+16=0.解得e2=4或e2=.又02,∴e2=4,∴e=2.故选A.高考资源网版权所有,侵权必究!高考资源网(ks5u.com)您身边的高考专家例5双曲线虚轴的一个端点为M,两个焦点为F1,F2,∠F1MF2=120°,则双曲线的离心率为()图2(A)(B)(C)(D)解析:如图2所示,不妨设M(0,b),F1(-6、c,0),F2(c,0),则7、MF18、=9、MF210、=.又11、F1F212、=2c,在△F1MF2中,由余弦定理,得cos∠F1MF2=,即=cos120°=﹣,∴=﹣,∵b2=c2﹣a2,∴=﹣,∴3a2=2c2,∴e2=,∴e=.故选B.例6双曲线﹣=1的两条渐近线互相垂直,那么该双曲线的离心率为()A.2B.C.D.解析:由条件易知,双曲线为等轴双曲线,∴a=b,∴c=a,∴e==.故选C.四、根据曲线方程列出含参数的关系式,求e的取值范围例7设θ∈(0,),则二次曲线x2cotθ﹣y2tanθ=1的离心率的取值范围为()A.(0,)B.(,)C.(,)D.(,+13、∞)解析:由x2cotθ﹣y2tanθ=1,θ∈(0,),得a2=tanθ,b2=cotθ,∴c2=a2+b2=tanθ+cotθ,∴e2===1+cot2θ,∵θ∈(0,),∴cot2θ>1,∴e2>2,∴e>.故选D.五、构建关于e的不等式,求e的取值范围例8如图,已知梯形ABCD中,|AB|=2|CD|,点E分有向线段所成的比为λ,双曲线过C、D、E三点,且以A、B为焦点.当≤λ≤时,求双曲线离心率e的取值范围.图3解析:以AB的垂直平分线为y轴,直线AB为x轴,建立如图3所示的直角坐标系xOy,则CD⊥y轴.因为双曲线经过点C、D,且以A、B为焦点,由双14、曲线的对称性知C、D关于y轴对称.依题意,记A(﹣c,0),C(,h),E(x0,y0),其中c=|AB|为双曲线的半焦距,h是梯形的高.高考资源网版权所有,侵权必究!高考资源网(ks5u.com)您身边的高考专家由定比分点坐标公式得x0==,y0=.设双曲线的方程为﹣=1,则离心率e=.由点C、E在双曲线上,所以,将点C的坐标代入双曲线方程得﹣=1①,将点E的坐标代入双曲线方程得()2-()2=1②.再将e=①、②得﹣=1,∴=﹣1③,()2-()2=1④.将③式代入④式,整理得(4-4λ)=1+2λ,∴λ=1-.由题设≤λ≤得,≤1-≤.解得≤e≤.所以双曲15、线的离心率的取值范围为[,].高考资源网版权所有,侵权必究!
5、A.2B.C.D.解析:由已知,直线L的方程为bx+ay-ab=0.由点到直线的距离公式,得=c,又c2=a2+b2,∴4ab=c2,两边平方,得16a2(c2﹣a2)=3c4.两边同除以a4,并整理,得3e4-16e2+16=0.解得e2=4或e2=.又02,∴e2=4,∴e=2.故选A.高考资源网版权所有,侵权必究!高考资源网(ks5u.com)您身边的高考专家例5双曲线虚轴的一个端点为M,两个焦点为F1,F2,∠F1MF2=120°,则双曲线的离心率为()图2(A)(B)(C)(D)解析:如图2所示,不妨设M(0,b),F1(-
6、c,0),F2(c,0),则
7、MF1
8、=
9、MF2
10、=.又
11、F1F2
12、=2c,在△F1MF2中,由余弦定理,得cos∠F1MF2=,即=cos120°=﹣,∴=﹣,∵b2=c2﹣a2,∴=﹣,∴3a2=2c2,∴e2=,∴e=.故选B.例6双曲线﹣=1的两条渐近线互相垂直,那么该双曲线的离心率为()A.2B.C.D.解析:由条件易知,双曲线为等轴双曲线,∴a=b,∴c=a,∴e==.故选C.四、根据曲线方程列出含参数的关系式,求e的取值范围例7设θ∈(0,),则二次曲线x2cotθ﹣y2tanθ=1的离心率的取值范围为()A.(0,)B.(,)C.(,)D.(,+
13、∞)解析:由x2cotθ﹣y2tanθ=1,θ∈(0,),得a2=tanθ,b2=cotθ,∴c2=a2+b2=tanθ+cotθ,∴e2===1+cot2θ,∵θ∈(0,),∴cot2θ>1,∴e2>2,∴e>.故选D.五、构建关于e的不等式,求e的取值范围例8如图,已知梯形ABCD中,|AB|=2|CD|,点E分有向线段所成的比为λ,双曲线过C、D、E三点,且以A、B为焦点.当≤λ≤时,求双曲线离心率e的取值范围.图3解析:以AB的垂直平分线为y轴,直线AB为x轴,建立如图3所示的直角坐标系xOy,则CD⊥y轴.因为双曲线经过点C、D,且以A、B为焦点,由双
14、曲线的对称性知C、D关于y轴对称.依题意,记A(﹣c,0),C(,h),E(x0,y0),其中c=|AB|为双曲线的半焦距,h是梯形的高.高考资源网版权所有,侵权必究!高考资源网(ks5u.com)您身边的高考专家由定比分点坐标公式得x0==,y0=.设双曲线的方程为﹣=1,则离心率e=.由点C、E在双曲线上,所以,将点C的坐标代入双曲线方程得﹣=1①,将点E的坐标代入双曲线方程得()2-()2=1②.再将e=①、②得﹣=1,∴=﹣1③,()2-()2=1④.将③式代入④式,整理得(4-4λ)=1+2λ,∴λ=1-.由题设≤λ≤得,≤1-≤.解得≤e≤.所以双曲
15、线的离心率的取值范围为[,].高考资源网版权所有,侵权必究!
此文档下载收益归作者所有