欢迎来到天天文库
浏览记录
ID:16206555
大小:38.00 KB
页数:3页
时间:2018-08-08
《投影的基本知识63330》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、第二章投影的基本知识一、投影的概念 如图a,三角板在灯光的照射下在桌面上产生影子,可以看出,影子与物体本身的形状有一定的几何关系,人们将这种自然现象加以科学的抽象得出投影法。如图b,将光源抽象为一点S,称为投影中心,投影中心与物体上各点(A、B、C)的投影连线(SAa、SBb、SCc)称为投影线,接受投影的面,称为投影面。过物体上各点(A、B、C)的投影线与投影面的交点称为这些点的投影。 投影分为中心投影和平行投影两大类。 对于这个图,所有投射线都交于投影中心点S,这样的投影称为中心投影。 当把投影
2、中心移到无穷远处时,所有的投影线都互相平行,这样的投影称为平行投影。 根据投影线与投影面是否垂直,平行投影又分为斜投影和正投影两种。当投影线倾斜与投影面时,称斜投影;投影线垂直与投影面时,称正投影。 工程图样一般都是采用正投影法绘制的,正投影法是本课程的研究重点。若不特殊说明,都是指正投影。 这是空间点A,与投影面H,要作出空间点A在H面上的正投影,就要过空间点A作H面的垂线,垂线与H面的交点就是空间点A在H面上的投影。要作直线在H面上的投影,只要分别作出直线两端点在H面上的投影,连线即可。同理可作出
3、平面图形的投影。二、正投影的基本性质 1.真实性 当直线段平行于投影面时,直线段与它的投影及过两端点的投影线组成一矩形,因此,直线的投影反映直线的实长。当平面图形平行与投影面时,不难得出,平面图形与它的投影为全等图形,即反映平面图形的实形。由此我们可得出:平行与投影面的直线或平面图形,在该投影面上的投影反映线段的实长或平面图形的实形,这种投影特性称为真实性。 2.积聚性 当直线垂直于投影面时,过直线上所有点的投影线都与直线本身重合,因此与投影面只有一个交点,即直线的投影积聚成一点。当平面图形垂直于投
4、影面时,过平面上所有点的投影线均与平面本身重合,与投影面交于一条直线,即投影为直线。由此可得出: 当直线或平面图形垂直于投影面时,它们在该投影面上的投影积聚成一点或一直线,这种投影特性称为积聚性。 3.类似性 当直线倾斜于投影面时,直线的投影仍为直线,不反映实长;当平面图形倾斜于投影面时,在该投影面上的投影为原图形的类似形。注意:类似形并不是相似形,它和原图形只是边数相同、形状类似,圆的投影为椭圆。
此文档下载收益归作者所有