解析式代数式整式的分类

解析式代数式整式的分类

ID:15928844

大小:71.00 KB

页数:3页

时间:2018-08-06

解析式代数式整式的分类_第1页
解析式代数式整式的分类_第2页
解析式代数式整式的分类_第3页
资源描述:

《解析式代数式整式的分类》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、超越式  先说初等数学运算。初等数学运算分为初等代数运算和初等超越运算。一类是初等代数运算,包括加、减、乘、除、正整数次乘方、开方、有理数次乘方;另一类是初等超越运算,初等超越运算,包括无理数次乘方、指数、对数、三角、反三角等运算。根据运算不同,解析式分为两大类。对字母只进行初等代数运算的解析式称为代数式,如2x2-3xy+y2,等都是代数式。对字母进行了有限次初等超越运算的解析式,称为初等超越式,简称超越式,如:log2(1+x)等,都是超越式。代数式代数式:由数和表示数的字母经有限次加、减、乘、除、乘方和开方等代数运算所得的式子,或含有字母的数学表达式称为代数式。例

2、如:ax+2b,-2/3,b^2/26,√a+√2等。注意:1、不包括等于号(=、≡)、不等号(≠、≤、≥、<、>、≮、≯)、约等号≈。2、可以有绝对值。例如:

3、x

4、,

5、-2.25

6、等。代数式  代数式dàishùshì(algebraicexpression)数学名词。  用运算符导(指加、减、乘、除、乘方、开方)把数或表示数的字母连接而成的式子叫做代数式。数的一切运算规律也适用于代数式。单独的一个数或者一个字母也是代数  式.带有“<(≤)”“>(≥)”“=”“≠”等符号的不是代数式  代数式  产生在古代,当算术里积累了大量的,关于各种数量问题的解法后,为了寻求有

7、系统的、更普遍的方法,以解决各种数量关系的问题,就产生了以解方程的原理为中心问题的初等代数。  代数是由算术演变来的,这是毫无疑问的。至于什么年代产生的代数学这门学科,就很不容易说清楚了。比如,如果你认为“代数学”是指解bx+k=0这类用符号表示的方程的技巧。那么,这种“代数学”是在十六世纪才发展起来的。  如果我们对代数符号不是要求象现在这样简练,那么,代数学的产生可上溯到更早的年代。西方人将公元前三世纪古希腊数学家刁藩都看作是代数学的鼻祖。而在中国,用文字来表达的代数问题出现的就更早了。  “代数”作为一个数学专有名词、代表一门数学分支在我国正式使用,最早是在185

8、9年。那年,清代数学家里李善兰和英国人韦列亚力共同翻译了英国人棣么甘所写的一本书,译本的名称就叫做《代数学》。当然,代数的内容和方法,我国古代早就产生了,比如《九章算术》中就有方程问题。  初等代数的中心内容是解方程,因而长期以来都把代数学理解成方程的科学,数学家们也把主要精力集中在方程的研究上。它的研究方法是高度计算性的。  要讨论方程,首先遇到的一个问题是如何把实际中的数量关系组成代数式,然后根据等量关系列出方程。所以初等代数的一个重要内容就是代数式。由于事物中的数量关系的不同,大体上初等代数形成了整式、分式和根式这三大类代数式。代数式是数的化身,因而在代数中,它们

9、都可以进行四则运算,服从基本运算定律,而且还可以进行乘方和开方两种新的运算。通常把这六种运算叫做代数运算,以区别于只包含四种运算的算术运算。  在初等代数的产生和发展的过程中,通过解方程的研究,也促进了数的概念的进一步发展,将算术中讨论的整数和分数的概念扩充到有理数的范围,使数包括正负整数、正负分数和零。这是初等代数的又一重要内容,就是数的概念的扩充。  有了有理数,初等代数能解决的问题就大大的扩充了。但是,有些方程在有理数范围内仍然没有解。于是,数的概念在一次扩充到了实数,进而又进一步扩充到了复数。  那么到了复数范围内是不是仍然有方程没有解,还必须把复数再进行扩展呢

10、?数学家们说:不用了。这就是代数里的一个著名的定理—代数基本定理。这个定理简单地说就是n次方程有n个根。1742年12月15日瑞士数学家欧拉曾在一封信中明确地做了陈述,后来另一个数学家、德国的高斯在1799年给出了严格的证明。  代数式在实数范围内,代数式分为有理式和无理式。表示方根代数式,都可称其为根式。根式异于无理式,被开方式无限制。被开方式有字母,才能称为无理式。无理式都是根式,区分它们有标志。被开方式有字母,又可称为无理式。有理式  有理式包括整式(除数中没有字母的有理式)和分式(除数中有字母且除数不为0的有理式)。这种代数式中对于字母只进行有限次加、减、乘、除

11、和整数次乘方这些运算.  整式有包括单项式(数字或字母的乘积或单独的一个数字或字母)和多项式(若干个单项式的和).  1.单项式  没有加减运算的整式叫做单项式。  单项式的系数:单项式中的数字因数叫做单项式(或字母因数)的数字系数,简称系数  单项式的次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数  2.多项式  几个单项式的代数和叫做多项式;多项式中每个单项式叫做多项式的项。不含字母的项叫做常数项。  多项式的次数:多项式里,次数最高的项的次数,就是这个多项式的次数。齐次多项式:各项次数相同的多项式叫做齐次多项式。不可约多

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。