欢迎来到天天文库
浏览记录
ID:15780196
大小:86.50 KB
页数:6页
时间:2018-08-05
《数系的扩充与复数的引入同步检测3》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第三章 3.2 第2课时一、选择题1.(2015·山东文,2)若复数z满足=i,其中i为虚数单位,则z=导学号966601022( )A.1-iB.1+iC.-1-iD.-1+i[答案] A[解析] 由题意=i(1-i)=1+i,所以,z=1-i,故选A.2.(2014·全国新课标Ⅰ文)设z=+i,则
2、z
3、=导学号966601023( )A.B.C.D.2[答案] B[解析] ∵z=+i=+i=+i,∴
4、z
5、==.3.i是虚数单位,复数=导学号966601024( )A.1+2iB.2+4iC.-1-2iD.2-
6、i[答案] A[解析] ===1+2i.4.若复数z=1+i(i为虚数单位),是z的共轭复数,则z2+2的虚部为导学号966601025( )A.0B.-1C.1D.-2[答案] A[解析] ∵z=1+i,∴=1-i,z2=(1+i)2=1+2i+i2=2i,2=(1-i)2=1-2i+i2=-2i,所以z2+2=0.5.若x-2+yi和3x-i互为共轭复数,则实数x与y的值是导学号966601026( )A.x=3,y=3B.x=5,y=1C.x=-1,y=-1D.x=-1,y=1[答案] D[解析] 由题意得,
7、∴.6.复数z=-1在复平面内所对应的点在导学号966601027( )A.第一象限B.第二象限C.第三象限D.第四象限[答案] B[解析] ∵-1=-1=-1=-1+i,∴复数z对应的点在第二象限.二、填空题7.已知i是虚数单位,计算=__________.导学号966601028[答案] --i[解析] ====--i.8.-=________.导学号966601029[答案] -i[解析] 原式=-=-=-=-i.三、解答题9.复数z=a+bi(a、b∈R)满足z2=3+4i,求z.导学号966601030[解
8、析] ∵(a+bi)2=a2-b2+2abi,z2=3+4i,∴a2-b2+2abi=3+4i.∴,解得或.∴z=2+i或z=-2-i.一、选择题1.已知i是虚数单位,a、b∈R,则“a=b=1”是“(a+bi)2=2i”的导学号966601031( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件[答案] A[解析] 当a=b=1时,(a+bi)2=(1+i)2=2i;当(a+bi)2=2i时,得,解得a=b=1或a=b=-1,故“a=b=1”是“(a+bi)2=2i”的充分不必要条件
9、.2.(2016·北京文,2)复数=( )A.iB.1+iC.-iD.1-i[答案] A[解析] ===i.3.复数z=,则ω=z2+z4+z6+z8+z10的值为导学号966601033( )A.1 B.-1 C.i D.-i[答案] B[解析] z2=()2=-1,∴ω=-1+1-1+1-1=-1.4.设复数z=-+i(i为虚数单位),则满足等式zn=z,且大于1的正整数n中最小的是导学号966601034( )A.3 B.4 C.6 D.7[答案] B[解析] z3=1,zn=z,即zn-1=1,n-
10、1应是3的倍数,n-1=3时,n=4,故n的最小值为4.二、填空题5.复数z1=3+i,z2=1-i,则z=z1·2在复平面内对应的点的坐标是________.导学号966601035[答案] (2,4)[解析] z1·=(3+i)(1+i)=(3-1)+4i=2+4i.∴z1·2对应点为(2,4).6.若复数z1=4+29i,z2=6+9i,其中i是虚数单位,则复数(z1-z2)i的实部为________.导学号966601036[答案] -20[解析] 本题主要考查复数的概念及运算.∵z1=4+29i,z2=6+9
11、i,∴(z1-z2)i=[(4+29i)-(6+9i)]i=-20-2i.∴复数(z1-z2)i的实部为-20.三、解答题7.若f(z)=,z1=3+4i,z2=-2+i,求f()的值.导学号966601037[解析] ∵z1-z2=(3+4i)-(-2+i)=3+4i+2-i=5+3i,又∵f(z)=,∴f()=z1-z2=5+3i.8.已知z=1+i,如果=1-i,求实数a、b的值.导学号966601038[解析] ∵z=1+i,则z2-z+1=(1+i)2-(1+i)+1=12+2i+i2-1-i+1=i.z2+
12、az+b=2i+a(1+i)+b=a+b+(2+a)i.∵=1-i,∴a+b+(2+a)i=i(1-i)=1+i,∴,∴.9.已知z=(a>0,a∈R),复数w=z(z+i)的虚部减去它的实部所得的差是,求复数w.导学号966601039[解析] 已知z=,则w=(+i)=+i.根据题意,可得-=.整理,得a2=4.又∵a>0,∴
此文档下载收益归作者所有