§1.4.1 全称量词与存在量词

§1.4.1 全称量词与存在量词

ID:1576072

大小:32.00 KB

页数:13页

时间:2017-11-12

§1.4.1  全称量词与存在量词_第1页
§1.4.1  全称量词与存在量词_第2页
§1.4.1  全称量词与存在量词_第3页
§1.4.1  全称量词与存在量词_第4页
§1.4.1  全称量词与存在量词_第5页
资源描述:

《§1.4.1 全称量词与存在量词》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、§1.4.1全称量词与存在量词§141全称量词与存在量词【学情分析】:1、本节内容主要是通过丰富的实例,使学生了解生活和数学中经常使用的两类量词(全称量词和存在量词)的含义,会判断含有一个量词的全称或特称命题的真假,会正确写出他们的否定形式,为我们从量的形式和范围上认识和解决问题提供了新的思路和方法;2全称量词:日常生活和数学中所用的“一切的”,“所有的”,“每一个”,“任意的”,“凡”,“都”等词可统称为全称量词,记作、等;3存在量词:日常生活和数学中所用的“存在”,”有一个”,“有的”,“至少有一个”等词统称为存在量词,记作,等;4.含有全称量词的命题称为全称命题,含有存在量词

2、的命题称为存在性称命题;全称命题的格式:“对中的所有x,p(x)”的命题,记为:存在性命题的格式:“存在集合中的元素x0,q(x0)”的命题,记为:x0∈,p(x0)通过生活和数学中的丰富实例,理解全称量词与存在量词的意义,能识别全称命题与特称命题6.培养学生用所学知识解决综合数学问题的能力。【教学目标】:(1)知识目标:通过生活和数学中的丰富实例,理解全称量词与存在量词的意义;(2)过程与方法目标:能准确地利用全称量词与存在量词叙述数学内容;(3)情感与能力目标:培养学生用所学知识解决综合数学问题的能力【教学重点】:理解全称量词与存在量词的意义;【教学难点】:全称命题和特称命题真

3、假的判定【教学过程设计】:教学环节教学活动设计意图情境引入问题1:下列语句是命题吗?(1)与(3)、(2)与(4)之间有什么关系?(1)x>3;(2)2x+1是整数;(3)对所有的x∈R,x>3;(4)对任意一个x∈Z,2x+1是整数;通过数学实例,理解全称量词的意义知识建构定义:1.全称量词及表示:表示全体的量词称为全称量词。表示形式为“所有”、“任意”、“每一个”等。通常用符号“”表示,读作“对任意”。2.含有全称量词的命题,叫做全称命题。一般用符号简记为“”。读作“对任意的x属于,有p(x)成立。(其中为给定的集合,是关于x的命题。)例如“对任意实数x,都有”可表示为。引导学

4、生通过通过一些数学实例分析,概括出一般特征。自主学习1、引导学生阅读教科书P22上的例1中每组全称命题的真假,纠正可能出现的逻辑错误。规律:全称命题为真,必须对给定的集合的每一个元素x,为真,但要判断一个全称命题为假,只要在给定的集合内找出一个,使为假巩固练习本P23练习1学生探究问题2:下列语句是命题吗?(1)与(3)、(2)与(4)之间有什么关系?(1)2x+1=3;(2)x能被2和整除;(3)存在一个x0∈R,使2x0+1=3;(4)至少有一个x0∈Z,x0能被2和3整除;通过数学实例,理解存在量词的意义知识建构:定义:(1)存在量词及表示:表示部分的量称为存在量词。表示形式

5、为“有一个”,“存在一个”,“有点”,“有些”、至少有一个等。通常用符号“”表示,读作“存在”。(2)含有存在量词的命题叫做特称命题,一般形式x0∈,p(x0),读作“存在一个x0属于,有p(x0)成立。(其中为给定的集合,p(x0)是关于x0的命题。)例如“存在有理数x0,使”可表示为引导学生通过通过一些数学实例分析,概括出一般特征。自主学习1、引导学生阅读教科书P23上的例2,判断每组特称命题的真假,纠正可能出现的逻辑错误。特称命题x0∈,p(x0)为真,只要在给定的集合中找出一个元素x0,使命题P(x0)为真,否则为假;通过实例,使学生会判断每组特称命题的真假堂练习1.本P2

6、3练习2通过练习,反馈学生对本节所学知识理解和掌握的程度补充练习:1.判断以下命题的真假:(1)(2)(3)(4)分析:(1)真;(2)假;(3)假;(4)真;2.指出下述推理过程的逻辑上的错误:第一步:设a=b,则有a2=ab第二步:等式两边都减去b2,得a2-b2=ab-b2第三步:因式分解得(a+b)(a-b)=b(a-b)第四步:等式两边都除以a-b得,a+b=b第五步:由a=b代人得,2b=b第六步:两边都除以b得,2=1分析:第四步错:因a-b=0,等式两边不能除以a-b第六步错:因b可能为0,两边不能立即除以b,需讨论。心得:(a+b)(a-b)=b(a-b)a+b=

7、b是存在性命题,不是全称命题,由此得到的结论不可靠。同理,由2b=b2=1是存在性命题,不是全称命题。3.判断下列语句是不是全称命题或者存在性命题,如果是,用量词符号表达出。(1)中国的所有江河都注入太平洋;(2)0不能作除数;(3)任何一个实数除以1,仍等于这个实数;(4)每一个向量都有方向;分析:(1)全称命题,河流x∈{中国的河流},河流x注入太平洋;(2)存在性命题,0∈R,0不能作除数;(3)全称命题,x∈R,;(4)全称命题,,有方向;小结1.全称量词及表

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。