简单的线性规划问题

简单的线性规划问题

ID:15742884

大小:70.00 KB

页数:5页

时间:2018-08-05

简单的线性规划问题_第1页
简单的线性规划问题_第2页
简单的线性规划问题_第3页
简单的线性规划问题_第4页
简单的线性规划问题_第5页
资源描述:

《简单的线性规划问题》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、简单的线性规划问题一、内容分析线性规划主要用于解决生活、生产中的资源利用、人力调配、生产安排等问题,它是一种重要的数学模型.简单的线性规划指的是目标函数含两个自变量的线性规划,其最优解可以用数形结合方法求出。教科书利用生产安排的具体实例,介绍了线性规划问题的图解法,引出线性规划等的概念,最后举例说明了简单的二元线性规划在饮食营养搭配中的应用,突出体现了优化的思想.本节课为该单元的第3课时,主要内容是线性规划的相关概念和简单的线性规划问题的解法.重点是如何根据实际问题准确建立目标函数,并依据目标函数的几何含义运用数形结合方法求出最优解。二、

2、学情分析本节课学生在学习了不等式、直线方程的基础上,又通过实例,理解了平面区域的意义,并会画出平面区域,还能初步用数学关系式表示简单的二元线性规划的限制条件,将实际问题转化为数学问题.从数学知识上看,问题涉及多个已知数据、多个字母变量,多个不等关系,从数学方法上看,学生对图解法的认识还很少,数形结合的思想方法的掌握还需时日,这都成了学生学习的困难.三、设计思想本课以问题为载体,以学生为主体,以数学实验为手段,以问题解决为目的,以几何画板作为平台,激发他们动手操作、观察思考、猜想探究的兴趣。注重引导帮助学生充分体验“从实际问题到数学问题”的

3、建构过程,“从具体到一般”的抽象思维过程,应用“数形结合”的思想方法,培养学生的学会分析问题、解决问题的能力。四、教学目标1.了解线性规划的意义以及线性约束条件、线性目标函数、可行解、可行域、最优解等相关概念.了解线性规划模型的特征:一组决策变量(x,y)表示一个方案;约束条件是一次不等式组;目标函数是线性的,求目标函数的最大值或最小值.熟悉线性约束条件(不等式组)的几何表征是平面区域(可行域).体会可行域与可行解、可行域与最优解、可行解与最优解的关系。2.在实验探究的过程中,让学生体验数学活动充满着探索与创造,培养学生的数据分析能力、探

4、索能力、合情推理能力及动手操作、勇于探索的精神。3.在应用图解法解题的过程中,培养学生运用数形结合思想解题的能力和化归能力,体验数学来源于生活,服务于生活,体验数学在建设节约型社会中的作用。五、教学重、难点求线性目标函数的最值问题是重点;从数学思想上看,学生对为什么要将求目标函数最值问题转化为经过可行域的直线在y轴上的截距的最值问题?以及如何想到要这样转化?存在一定疑虑及困难;教学应紧扣问题实际,通过突出知识的形成发展过程,引入数学实验来突破这一难点。六、教学过程设计(一)引入(1)情景某工厂用A、B两种配件生产甲、乙两种产品,每生产一件

5、甲产品使用4个A配件耗时1h,每生产一件乙产品使用4个B配件耗时2h.该产每天最多可从配件厂获得16个A配件和12个B配件,按每天工作8h计算,该厂所有可能的日生产安排是什么?请学生读题,引导阅读理解后,列表→建立数学关系式→画平面区域,学生就近既分工又合作,教师关注有多少学生写出了线性数学关系式,有多少学生画出了相应的平面区域,在巡视中并发现代表性的练习进行展示,强调这是同一事物的两种表达形式数与形.【问题情景使学生感到数学是自然的、有用的,学生已初步学会了建立线性规划模型的三个过程:列表→建立数学关系式→画平面区域,可放手让学生去做,

6、再次经历从实际问题中抽象出数学问题的过程,教师则在数据的分析整理、表格的设计上加以指导】教师打开几何画板,作出平面区域.(2)问题师:进一步提出问题,若生产一件甲产品获利2万元,生产一件乙产品获利3万元,采用哪种生产安排利润最大?学生不难列出函数关系式z=2x+3y.师:这是关于变量x,y的一次解析式,从函数的观点看x,y的变化引起z的变化,而是区域内的动点的坐标,对于每一组的值都有唯一的z值与之对应,请算出几个z的值.填入课前发下的实验探究报告单中的第2—4列进行观察,看看你有什么发现?学生会选择比较好算的点,比如整点、边界点等.【学生

7、思维的最近发现区是上节的相关知识,因此教师有目的引导学生利用几何直观解决问题,虽然这个过程计算比较繁琐,操作起来有难度,但是教学是一个过程,从中让学生体会科学探索的艰辛,这样引导出教科书给出的数形结合的合理性,也为引入信息技术埋下伏笔】(二)实验教师打开画板,当堂作出图,在区域内任意取点,进行计算,请学生与自己的数据对比,继续在实验探究报告单上补充填写画板上的新数据.利润最大的实验探究报告单实验目的1.求z=2x+3y的最大值,使x,y满足约束条件2.理解用图解法求线性规划问题的最优解,体会数形结合的思想.进行实验与收集数据(1)打开几何

8、画板依次画出点、线构造平面区域。(2)在区域内任取一点M,度量横坐标及纵坐标,计算z=2x+3y的值,并制表显示在屏幕上。(3)拖动点M在区域内运动,观察度量值的变化,猜想取得最大值时点M的位

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。