欢迎来到天天文库
浏览记录
ID:1564034
大小:28.50 KB
页数:8页
时间:2017-11-12
《2012届高考数学第一轮指数与指数函数专项复习教案》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、2012届高考数学第一轮指数与指数函数专项复习教案27指数与指数函数●知识梳理1指数(1)n次方根的定义:若xn=a,则称x为a的n次方根,“”是方根的记号在实数范围内,正数的奇次方根是一个正数,负数的奇次方根是一个负数,0的奇次方根是0;正数的偶次方根是两个绝对值相等符号相反的数,0的偶次方根是0,负数没有偶次方根(2)方根的性质①当n为奇数时,=a②当n为偶数时,=
2、a
3、=(3)分数指数幂的意义①a=(a>0,、n都是正整数,n>1)②a==(a>0,、n都是正整数,n>1)2指数函数(1)指数函数的定义一般地,函数=ax(a>0且a≠1)
4、叫做指数函数(2)指数函数的图象底数互为倒数的两个指数函数的图象关于轴对称(3)指数函数的性质①定义域:R②值域:(0,+∞)③过点(0,1),即x=0时,=1④当a>1时,在R上是增函数;当0<a<1时,在R上是减函数●点击双基1•等于A-B-D解析:•=a•(-a)=-(-a)=-(-a)答案:A2(2003年郑州市质量检测题)函数=2的图象与直线=x的位置关系是解析:=2=()x∵>1,∴不可能选D又∵当x=1时,2>x,而当x=3时,2<x,∴不可能选A、B答案:3(2004年湖北,)若函数=ax+b
5、-1(a>0且a≠1)的图象经过二、三、四象限,则一定有A0<a<1且b>0Ba>1且b>00<a<1且b<0Da>1且b<0解析:作函数=ax+b-1的图象答案:4(2004年全国Ⅱ,理6)函数=-ex的图象A与=ex的图象关于轴对称B与=ex的图象关于坐标原点对称与=e-x的图象关于轴对称D与=e-x的图象关于坐标原点对称解析:图象法答案:D(2004年湖南,16)若直线=2a与函数=
6、ax-1
7、(a>0且a≠1)的图象有两个公共点,则a的取值范围是___________________解析:数形结合由图象可知0<2a<1,0<a<答案:0
8、<a<6函数=()的递增区间是___________解析:∵=()x在(-∞,+∞)上是减函数,而函数=x2-2x+2=(x-1)2+1的递减区间是(-∞,1],∴原函数的递增区间是(-∞,1]答案:(-∞,1]●典例剖析【例1】下图是指数函数(1)=ax,(2)=bx,(3)=x,(4)=dx的图象,则a、b、、d与1的大小关系是Aa<b<1<<dBb<a<1<d<1<a<b<<dDa<b<1<d<剖析:可先分两类,即(3)(4)的底数一定大于1,(1)(2)的底数小于1,然后再从(3)(4)中比较、d的大小,从(1)(2)中比较a、b的大小
9、解法一:当指数函数底数大于1时,图象上升,且当底数越大,图象向上越靠近于轴;当底数大于0小于1时,图象下降,底数越小,图象向右越靠近于x轴得b<a<1<d<解法二:令x=1,由图知1>d1>a1>b1,∴b<a<1<d<答案:B【例2】已知2≤()x-2,求函数=2x-2-x的值域解:∵2≤2-2(x-2),∴x2+x≤4-2x,即x2+3x-4≤0,得-4≤x≤1又∵=2x-2-x是[-4,1]上的增函数,∴2-4-24≤≤2-2-1故所求函数的值域是[-,]【例3】要使函数=1+2x+4xa在x∈(-∞,1]上>0恒成立,求a的取值范围解:
10、由题意,得1+2x+4xa>0在x∈(-∞,1]上恒成立,即a>-在x∈(-∞,1]上恒成立又∵-=-()2x-()x=-[()x+]2+,当x∈(-∞,1]时值域为(-∞,-],∴a>-评述:将不等式恒成立问题转化为求函数值域问题是解决这类问题常用的方法●闯关训练夯实基础1已知f(x)=ax,g(x)=-lgbx,且lga+lgb=0,a≠1,b≠1,则=f(x)与=g(x)的图象A关于直线x+=0对称B关于直线x-=0对称关于轴对称D关于原点对称解析:lga+lgb=0ab=1∴g(x)=-lgbx=-lga-1x=lgax∴f(x)与g(
11、x)的图象关于=x对称答案:B2下列函数中值域为正实数的是A=-xB=()1-x=D=解析:∵=()x的值域是正实数,而1-x∈R,∴=()1-x的值域是正实数答案:B3化简(a>0,b>0)的结果是___________________解析:原式====答案:4满足条>()2的正数的取值范围是___________________解析:∵>0,∴当>1时,有2>2,即>2;当0<<1时,有2<2,即0<<1综上所述,>2或0<<1答案:>2或0<<1(2004年湖北,理7)函数f(x)=ax+lga(x+1)在[0,1]上的最大值与最小值的和
12、为a,则a的值为AB2D4解析:f(x)在[0,1]上是单调函数,由已知f(0)+f(1)=a1+lga1+a+lga2=alga2=-1a=答案:B
此文档下载收益归作者所有