待定系数法 习题训练

待定系数法 习题训练

ID:15578573

大小:232.00 KB

页数:5页

时间:2018-08-04

待定系数法  习题训练_第1页
待定系数法  习题训练_第2页
待定系数法  习题训练_第3页
待定系数法  习题训练_第4页
待定系数法  习题训练_第5页
资源描述:

《待定系数法 习题训练》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、待定系数法习题训练Ⅰ、再现性题组:1.设f(x)=+m,f(x)的反函数f(x)=nx-5,那么m、n的值依次为_____。A.,-2B.-,2C.,2D.-,-22.二次不等式ax+bx+2>0的解集是(-,),则a+b的值是_____。A.10B.-10C.14D.-143.在(1-x)(1+x)的展开式中,x的系数是_____。A.-297B.-252C.297D.2074.函数y=a-bcos3x(b<0)的最大值为,最小值为-,则y=-4asin3bx的最小正周期是_____。5.与直线L:2x+3y+5=0平行且过点A(1,-4)的直线L’的方程是______

2、_________。6.与双曲线x-=1有共同的渐近线,且过点(2,2)的双曲线的方程是____________。【简解】1小题:由f(x)=+m求出f(x)=2x-2m,比较系数易求,选C;2小题:由不等式解集(-,),可知-、是方程ax+bx+2=0的两根,代入两根,列出关于系数a、b的方程组,易求得a+b,选D;3小题:分析x的系数由C与(-1)C两项组成,相加后得x的系数,选D;4小题:由已知最大值和最小值列出a、b的方程组求出a、b的值,再代入求得答案;5小题:设直线L’方程2x+3y+c=0,点A(1,-4)代入求得C=10,即得2x+3y+10=0;6小题:

3、设双曲线方程x-=λ,点(2,2)代入求得λ=3,即得方程-=1。Ⅱ、示范性题组:例1.已知函数y=的最大值为7,最小值为-1,求此函数式。【分析】求函数的表达式,实际上就是确定系数m、n的值;已知最大值、最小值实际是就是已知函数的值域,对分子或分母为二次函数的分式函数的值域易联想到“判别式法”。【解】函数式变形为:(y-m)x-4x+(y-n)=0,x∈R,由已知得y-m≠0∴△=(-4)-4(y-m)(y-n)≥0即:y-(m+n)y+(mn-12)≤0①不等式①的解集为(-1,7),则-1、7是方程y-(m+n)y+(mn-12)=0的两根,代入两根得:解得:或∴y

4、=或者y=此题也可由解集(-1,7)而设(y+1)(y-7)≤0,即y-6y-7≤0,然后与不等式①比较系数而得:,解出m、n而求得函数式y。【注】在所求函数式中有两个系数m、n需要确定,首先用“判别式法”处理函数值域问题,得到了含参数m、n的关于y的一元二次不等式,且知道了它的解集,求参数m、n。两种方法可以求解,一是视为方程两根,代入后列出m、n的方程求解;二是由已知解集写出不等式,比较含参数的不等式而列出m、n的方程组求解。本题要求对一元二次不等式的解集概念理解透彻,也要求理解求函数值域的“判别式法”:将y视为参数,函数式化成含参数y的关于x的一元二次方程,可知其有

5、解,利用△≥0,建立了关于参数y的不等式,解出y的范围就是值域,使用“判别式法”的关键是否可以将函数化成一个一元二次方程。例2.设椭圆中心在(2,-1),它的一个焦点与短轴两端连线互相垂直,且此焦点与长轴较近的端点距离是-,求椭圆的方程。yB’xAFO’F’A’B【分析】求椭圆方程,根据所给条件,确定几何数据a、b、c之值,问题就全部解决了。设a、b、c后,由已知垂直关系而联想到勾股定理建立一个方程,再将焦点与长轴较近端点的距离转化为a-c的值后列出第二个方程。【解】设椭圆长轴2a、短轴2b、焦距2c,则

6、BF’

7、=a∴解得:∴所求椭圆方程是:+=1也可有垂直关系推证出等

8、腰Rt△BB’F’后,由其性质推证出等腰Rt△B’O’F’,再进行如下列式:,更容易求出a、b的值。【注】圆锥曲线中,参数(a、b、c、e、p)的确定,是待定系数法的生动体现;如何确定,要抓住已知条件,将其转换成表达式。在曲线的平移中,几何数据(a、b、c、e)不变,本题就利用了这一特征,列出关于a-c的等式。一般地,解析几何中求曲线方程的问题,大部分用待定系数法,基本步骤是:设方程(或几何数据)→几何条件转换成方程→求解→已知系数代入。例3.是否存在常数a、b、c,使得等式1·2+2·3+…+n(n+1)=(an+bn+c)对一切自然数n都成立?并证明你的结论。(89年

9、全国高考题)【分析】是否存在,不妨假设存在。由已知等式对一切自然数n都成立,取特殊值n=1、2、3列出关于a、b、c的方程组,解方程组求出a、b、c的值,再用数学归纳法证明等式对所有自然数n都成立。【解】假设存在a、b、c使得等式成立,令:n=1,得4=(a+b+c);n=2,得22=(4a+2b+c);n=3,得70=9a+3b+c。整理得:,解得,于是对n=1、2、3,等式1·2+2·3+…+n(n+1)=(3n+11n+10)成立,下面用数学归纳法证明对任意自然数n,该等式都成立:假设对n=k时等式成立,即1·2+2·3

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。