八上3.5 菱形的性质

八上3.5 菱形的性质

ID:15429957

大小:115.00 KB

页数:5页

时间:2018-08-03

八上3.5 菱形的性质_第1页
八上3.5 菱形的性质_第2页
八上3.5 菱形的性质_第3页
八上3.5 菱形的性质_第4页
八上3.5 菱形的性质_第5页
资源描述:

《八上3.5 菱形的性质》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、苏科版八年级数学教学案3.5菱形的性质教案班级姓名学号学习目标了解菱形的基本性质,掌握其特征.学习难点掌握菱形的性质.教学过程一、复习1.平行四边形有何特征?如何识别一个四边形是平行四边形?2.矩形有何性质?如何识别一个四边形是矩形?如何识别一个平行四边形是矩形?在学生思考、交流的过程中,老师适时进行指导.二、创设问题情境,导入新知出示可伸缩的衣帽架实物.老师在演示的过程中提问:图中的基本图形你熟悉吗?学生大多回答是平行四边形,让一个同学用尺量出这个平行四边形的邻边的长度(发现邻边相等这个特性)接着老师告诉学生,这种邻边相等的平行四边形,与一个角是直角的平行四边形一样也是一种特殊的平行四边

2、形,这是今天我们要研究的课题.教师板书:菱形.那究竟什么是菱形呢?学生在思考、交流中,老师适时地进行指导,把正确的定义板书在黑板上:一组邻边相等的平行四边形叫做菱形.这里的“平行四边形”不能写成“四边形”.“一组邻边相等的四边形,不一定是菱形”.这点务必加以强调.如果要用四边形下菱形的定义就应该是“四边都相等的四边形是菱形”.三、学生动手操作1.画一个△ABC,取BC的中点M,把△ABC绕着M,旋转180°后得一个△A′B′C′,△A′B′C′与△ABC拼成一个怎样的图形?(平行四边形)那么菱形也可以看作什么样的三角形通过绕着那一边的中点旋转180°后与原三角形拼成的?第5页共5页苏科版八

3、年级数学教学案2.画一个等腰△ABC,取底边BC中点M,把△ABC绕着M旋转180°后的三角形与原三角形拼成一个怎样的图形?(菱形)要说明它菱形,就应讲出根据来.请一个同学说出根据:“它是邻边相等的平行四边形”.如图所示.3.观察图,思考:(1)图中有哪些三角形是等腰三角形?(2)图中有哪些直角三角形?在学生交流的基础教师板书:(1)△ABC,△A′BC,△ACA′,△ABA′都是等腰三角形.(2)△ACM,△CMA′,△ABM,△BMA′都是直角三角形.让学生想一想后继续操作.菱形是中心对称图形,这点大家是不会怀疑的,刚才的操作已经说明了这一点,那么菱形是不是轴对称图形呢?大家都知道菱形

4、可以把等腰三角形绕着底边中点旋转180°后所得的三角形与原三角形拼成的.由于等腰三角形是轴对称图形,所以我们也可以判断出菱形也是轴对称图形.请大家想一想:(1)直角△ACM,直角△CMA′,直角△ABM,直角△BMA′的形状、大小是否相同?(2)如何用剪刀的办法,得到一个菱形的纸片呢?如图所示.请大家按如下步骤操作:(1)将一张矩形纸对折再对折;(2)用尺在折后的矩形的一角上画一条直线;(3)用剪刀沿着这条线剪下,打开.你发现这是一个什么样的图形.(如果在另一角画直线剪下的是两个等腰三角形要拼起来才可完成上面的四边形,究竟在哪一角画线,请思考后再动手.)第5页共5页苏科版八年级数学教学案根

5、据以上的操作与思考,你发现菱形它有哪些性质吗?教师让学生用语言进行表达出来,用边、角、对角线的顺序来阐明.教师板书:菱形性质:(边):对边平行、四边都相等.(角):对角相等.(对角线):对角线互相垂直平分,且平分各内角.由于菱形是平行四边形,所以它具有平行四边形的一切性质,上述的对边平行、对边相等、对角相等、对角线互相平分,就是平行四边形的性质,而邻边相等、对角线互相垂直,是它与平行四边形不同的特殊性质.上述的菱形性质是两种性质的总和.同时菱形还是轴对称图形,它的对称轴有两条,是两条对角线所在的直线,它是中心对称图形,其对称中心,就是它两条对角线的交点.四、范例分析,加深理解例2在菱形AB

6、CD中,BAD=2∠B.如图所示.试说明△ABC是等边三角形.学生观察图形并对照条件,进行思考、交流.师生共同分析:要说明△ABC是等边三角形,可以从以下几条入手:(1)说明AB=BC=AC;(2)说明∠BAC=∠ACB=∠ABC; (3)说明△ABC中,有两个角都等于60°.从第一条途径出发:我们知道四边形ABCD是菱形,即可获得AB=BC,现在只差AB=AC或BC=AC.要知道CB=AC,就要说明∠ABC=∠CAB;要知道BA=AC,就要说明∠ABC=∠ACB.由于AD∥BC,即可得到∠DAB+∠ABC=180°,第5页共5页苏科版八年级数学教学案故3∠ABC=180°,∠ABC=60

7、°.那么∠BAD=120°.由于菱形对角线平分内角.故∠BAC=60°,即∠BAC=∠ABC=60°.那么AB=AC.这样就可以得到△ABC是等边三角形.从第二条途径出发:就要从三个角入手,上面分析已得到:∠BAC=∠ABC,由于BA=BC,故∠BAC=∠BCA.那么∠BAC=∠ABC=∠BCA.这样△ABC是等边三角形就可获得说明,从第三条途径出发,第一条途径分析中已获得了.解:由于四边形ABCD是菱形,所以AB=BC

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。