2.2直接证明与间接证明(教学设计)(1)

2.2直接证明与间接证明(教学设计)(1)

ID:15391094

大小:266.00 KB

页数:4页

时间:2018-08-03

2.2直接证明与间接证明(教学设计)(1)_第1页
2.2直接证明与间接证明(教学设计)(1)_第2页
2.2直接证明与间接证明(教学设计)(1)_第3页
2.2直接证明与间接证明(教学设计)(1)_第4页
资源描述:

《2.2直接证明与间接证明(教学设计)(1)》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、2.2直接证明与间接证明(教学设计)(1)2.2.1综合法和分析法(1)--综合法教学目标:知识与技能目标:(1)理解综合法证明的概念;(2)能熟练地运用综合法证明数学问题。过程与方法目标:(1)通过实例引导学生分析综合法的思考过程与特点;(2)引导学生归纳出综合法证明的操作流程图。情感、态度与价值观:(1)通过综合法的学习,体会数学思维的严密性、抽象性、科学性。(2)通过综合法的学习,养成审核思维的习惯。教学重点:了解综合法的思考过程、特点教学难点:对综合法的思考过程、特点的概括教学过程:一、复习回顾,新课引入:合情推理分归纳推理和类比推理,所得的结论的正确性是要证明的。

2、数学结论的正确性必须通过逻辑推理的方式加以证明。本节我们将学习两类基本的证明方法:直接证明与间接证明。二、师生互动,新课讲解:1.综合法在数学证明中,我们经常从已知条件和某些数学定义、公理、定理等出发,通过推理推导出所要的结论。例1(课本P36例):已知a,b>0,求证给出以上问题,让学生思考应该如何证明,引导学生应用不等式证明。教师最后归结证明方法。充分讨论,思考,找出以上问题的证明方法设计意图:引导学生应用不等式证明以上问题,引出综合法的定义证明:因为,所以。因为,所以。因此。一般地,利用已知条件和某些数学定义、公理、定理等,经过一系列的推理论证,最后推导出所要证明的结

3、论成立,这种方法叫做综合法。用P表示已知条件、已有的定义、定理、公理等,Q表示要证明的结论,则综合法可表示为:综合法的特点是:由因导果,即由已知条件出发,利用已知的数学定理、性质和公式,推出结论的一种证明方法。例2(课本P37例3):在△ABC中,三个内角A,B,C的对边分别为,且A,B,C成等差数列,成等比数列,求证△ABC为等边三角形.分析:将A,B,C成等差数列,转化为符号语言就是2B=A+C;A,B,C为△ABC的内角,这是一个隐含条件,明确表示出来是A+B+C=;a,b,c成等比数列,转化为符号语言就是.此时,如果能把角和边统一起来,那么就可以进一步寻找角和边之间

4、的关系,进而判断三角形的形状,余弦定理正好满足要求.于是,可以用余弦定理为工具进行证明.证明:由A,B,C成等差数列,有2B=A+C.①因为A,B,C为△ABC的内角,所以A+B+C=.②由①②,得B=.③由a,b,c成等比数列,有.④由余弦定理及③,可得.再由④,得.即,因此.从而A=C.4由②③⑤,得A=B=C=.所以△ABC为等边三角形.注:解决数学问题时,往往要先作语言的转换,如把文字语言转换成符号语言,或把符号语言转换成图形语言等.还要通过细致的分析,把其中的隐含条件明确表示出来.例3:已知求证分析:本题可以尝试使用差值比较和商值比较两种方法进行。证明:1)差值比

5、较法:注意到要证的不等式关于对称,不妨设,从而原不等式得证。2)商值比较法:设故原不等式得证。注:比较法是证明不等式的一种最基本、最重要的方法。用比较法证明不等式的步骤是:作差(或作商)、变形、判断符号。例4、若实数,求证:证明:采用差值比较法:====∴成立∴例5.设函数对任意,都有,且时,.(1)证明为奇函数;(2)证明在上为减函数.证明:(1),,令,,,令,代入,得,而,,是奇函数;(2)任取,且,则,.又,4为奇函数,,,即,在上是减函数.三、课堂小结,巩固反思:综合法的特点是:由因导果,即由已知条件出发,利用已知的数学定理、性质和公式,推出结论的一种证明方法。四

6、、布置作业:A组:1、若,且a+b=4,则下列不等式中恒成立的个数是____(个)(写出所有正确的情况)①②③④【答案】:1个【解析】①项,所以,;②项,;③项,所以;④项,因为,所以,得,故只有④正确。2、(课本P44习题2.2A组:NO:1)已知都是锐角,且,求证:.解:因为展开得即(1)因为,所以.因为都是锐角,所以都是锐角从而所以,即。(1)式变形得即因为都是锐角,所以,从而3、(课本P44习题2.2A组:NO:2)4、在中,已知,且.判断的形状.解:,.又,,.又与均为的内角,.又由,得,,又由余弦定理,得,,,.4又,为等边三角形.4

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。