矩形的判定导学案 (2)

矩形的判定导学案 (2)

ID:15261090

大小:66.00 KB

页数:4页

时间:2018-08-02

矩形的判定导学案 (2)_第1页
矩形的判定导学案 (2)_第2页
矩形的判定导学案 (2)_第3页
矩形的判定导学案 (2)_第4页
资源描述:

《矩形的判定导学案 (2)》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、矩形的判定·导学案学习目标:1.理解并掌握矩形的判定方法.2.使学生能应用矩形定义、判定等知识,解决简单的证明题和计算题,进一步培养学生的分析能力重点、难点1.重点:矩形的判定.2.难点:矩形的判定及性质的综合应用.【课前预习】1.知识准备(1)矩形概念:(2)矩形性质:边:角:对角线:(3)矩形与平行四边形之间的关系?2.探究:一位很有名望的木工师傅,招收了两名徒弟。一天,师傅有事外出,两徒弟就自已在家练习用两块四边形的废料各做了一扇矩形式的门,完事之后,两人都说对方的门不是矩形,而自已的是矩形。甲的理由是:“我用直尺量这个门的两条对角线,发现它们的长度相等,所以我这个

2、四边形门就是矩形”。乙的理由是:“我用角尺量我的门任意三个角,发现它们都是直角。所以我这个四边形门就是矩形”。根据它们的对话,你能肯定谁的门一定是矩形。通过讨论得到矩形的判定方法.矩形判定方法1:().矩形判定方法2:().3.判定方法的证明判定1:已知:在ABCD中,AC=BD求证:四边形ABCD是矩形几何语言:已知:如图 ,在△ABC中,∠ACB=90°, CD为中线,延长CD到点E,使得DE=CD.连结AE,BE,则四边形ACBE为矩形.推论:的四边形是矩形。判定2:已知:∠A=∠B=∠C=90°求证:四边形ABCD是矩形证明:几何语言:4.概括矩形的判定方法:定义

3、:判定1:判定2:【课堂活动】例1下列各句判定矩形的说法正确的是(1)对角线相等的四边形是矩形(2)对角线互相平分且相等的四边形是矩形(3)四个角都相等的四边形是矩形 (4)有三个角都相等的四边形是矩形(5)有三个角是直角的四边形是矩形(6)一组对角互补的平行四边形是矩形;例2已知:ABCD的对角线AC、BD相交于点O,△AOB是等边三角形,AB=4m,求这个平行四边形的面积.变式:已知在ABCD中,对角线AC,BD相交于点O,且∠OBC=∠OCB.求证:四边形ABCD是矩形例3已知:如图(1),ABCD的四个内角的平分线分别相交于点E,F,G,H.求证:四边形EFGH是

4、矩形.(多种方法)【能力提升】1.下列说法正确的是().(A)有一组对角是直角的四边形一定是矩形(B)有一组邻角是直角的四边形一定是矩形(C)对角线互相平分的四边形是矩形(D)对角互补的平行四边形是矩形2.如图,E,F,G,H分别是四边形ABCD四条边的中点,要使四边形EFGH为矩形,四边形ABCD应具备的条件是()(A)一组对边平行而另一组对边不平行(B)对角线相等(C)对角线互相垂直(D)对角线互相平分3.如图,在四边形ABCD中,AD∥BC,∠D=90°,若再添加一个条件,就能推出四边形ABCD是矩形,你所添加的条件是4.已知:如图,在□ABCD中,以AC为斜边作R

5、t△ACE,且∠BED为直角.求证:四边形ABCD是矩形.5.如图,以△ABC的三边为边,在BC的同侧分别作3个等边三角形,即△ABD、△BCE、△ACF.请回答问题并说明理由:(1)四边形ADEF是什么四边形?(2)当△ABC满足什么条件时,四边形ADEF是矩形?6、如图,在等边△ABC中,点D是BC边的中点,以AD为边作等边△ADE(1)求∠CAE的度数;(2)取AB边的中点F,连结CF、CE,试证明四边形AFCE是矩形ACBDEF

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。