求二次函数的解析式及二次函数的应用

求二次函数的解析式及二次函数的应用

ID:15242758

大小:293.21 KB

页数:12页

时间:2018-08-02

求二次函数的解析式及二次函数的应用_第1页
求二次函数的解析式及二次函数的应用_第2页
求二次函数的解析式及二次函数的应用_第3页
求二次函数的解析式及二次函数的应用_第4页
求二次函数的解析式及二次函数的应用_第5页
资源描述:

《求二次函数的解析式及二次函数的应用》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、求二次函数的解析式及二次函数的应用2014.6.8一、求二次函数的解析式:最常用的方法是待定系数法,根据题目的特点,选择恰当的形式,一般,有如下几种情况:(1)已知抛物线上三点的坐标,一般选用一般式;(2)已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;(3)已知抛物线与x轴的两个交点的横坐标,一般选用两点式;(4)已知抛物线上纵坐标相同的两点,常选用顶点式。二、二次函数的应用:(1)应用二次函数解决实际问题的一般思路:理解题意;建立数学模型;解决题目提出的问题。(2)应用二次函数求实际问题中的最值:即解二次函数最值应用题,设法把关于最值

2、的实际问题转化为二次函数的最值问题,然后按求二次函数最值的方法求解。求最值时,要注意求得答案要符合实际问题。三、二次函数的三种表达形式:1、一般式:y=ax2+bx+c(a≠0,a、b、c为常数),顶点坐标为[,]把三个点代入函数解析式得出一个三元一次方程组,就能解出a、b、c的值。2、顶点式:y=a(x-h)2+k(a≠0,a、h、k为常数),顶点坐标为对称轴为直线x=h,顶点的位置特征和图像的开口方向与函数y=ax2的图像相同,当x=h时,y最值=k。有时题目会指出让你用配方法把一般式化成顶点式。例:已知二次函数y的顶点(1,2)和另一任意

3、点(3,10),求y的解析式。解:设y=a(x-1)2+2,把(3,10)代入上式,解得y=2(x-1)2+2。注意:与点在平面直角坐标系中的平移不同,二次函数平移后的顶点式中,h>0时,h越大,图像的对称轴离y轴越远,且在x轴正方向上,不能因h前是负号就简单地认为是向左平移。具体可分为下面几种情况:当h>0时,y=a(x-h)2的图象可由抛物线y=ax2向右平行移动h个单位得到;当h<0时,y=a(x-h)2的图象可由抛物线y=ax2向左平行移动

4、h

5、个单位得到;当h>0,k>0时,将抛物线y=ax2向右平行移动h个单位,再向上移动k个单位,

6、就可以得到y=a(x-h)2+k的图象;当h>0,k<0时,将抛物线y=ax2向右平行移动h个单位,再向下移动

7、k

8、个单位可得到y=a(x-h)2+k的图象;当h<0,k>0时,将抛物线y=ax2向左平行移动

9、h

10、个单位,再向上移动k个单位可得到y=a(x-h)2+k的图象;当h<0,k<0时,将抛物线y=ax212向左平行移动

11、h

12、个单位,再向下移动

13、k

14、个单位可得到y=a(x-h)2+k的图象。3、交点式:y=a(x-x1)(x-x2)(a≠0)[仅限于与x轴即y=0有交点时的抛物线,即b2-4ac≥0].已知抛物线与x轴即y=0有交点A(

15、x1,0)和B(x2,0),我们可设y=a(x-x1)(x-x2),然后把第三点代入x、y中便可求出a。由一般式变为交点式的步骤:二次函数∵x1+x2=,x1*x2=(由韦达定理得),∴y=ax2+bx+c=a(x2+x+)=a[x2-(x1+x2)x+x1*x2]=a(x-x1)(x-x2).重要概念:a,b,c为常数,a≠0,且a决定函数的开口方向。a>0时,开口方向向上;a<0时,开口方向向下。a的绝对值可以决定开口大小。a的绝对值越大开口就越小,a的绝对值越小开口就越大。能灵活运用这三种方式求二次函数的解析式;能熟练地运用二次函数在几何

16、领域中的应用;四、二次函数解释式的求法:就一般式y=ax2+bx+c(其中a,b,c为常数,且a≠0)而言,其中含有三个待定的系数a,b,c.求二次函数的一般式时,必须要有三个独立的定量条件,来建立关于a,b,c的方程,联立求解,再把求出的a,b,c的值反代回原函数解析式,即可得到所求的二次函数解析式。1.巧取交点式法:知识归纳:二次函数交点式:y=a(x-x1)(x-x2)(a≠0)x1,x2分别是抛物线与x轴两个交点的横坐标。已知抛物线与x轴两个交点的横坐标求二次函数解析式时,用交点式比较简便。⑴典型例题一:告诉抛物线与x轴的两个交点的横坐

17、标,和第三个点,可求出函数的交点式。例:已知抛物线与x轴交点的横坐标为-2和1,且通过点(2,8),求二次函数的解析式。点拨:解:设函数的解析式为y=a(x-x1)(x-x2),已知抛物线与x轴交点的横坐标为-2和1,∴y=a(x+2)(x-1),∵过点(2,8),12∴8=a(2+2)(2-1)。解得a=2,∴抛物线的解析式为:y=2(x+2)(x-1),即y=2x2+2x-4。⑵典型例题二:告诉抛物线与x轴的两个交点之间的距离和对称轴,可利用抛物线的对称性求解。例:已知二次函数的顶点坐标为(3,-2),并且图象与x轴两交点间的距离为4,求二

18、次函数的解析式。点拨:在已知抛物线与x轴两交点的距离和顶点坐标的情况下,问题比较容易解决.由顶点坐标为(3,-2)的条件,易知其对称轴为x=3,再利用

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。