欢迎来到天天文库
浏览记录
ID:15159700
大小:545.50 KB
页数:12页
时间:2018-08-01
《瞬时变化率—导数》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、瞬时变化率—导数学习目标:(1)理解并掌握曲线在某一点处的切线的概念(2)会运用瞬时速度的定义求物体在某一时刻的瞬时速度和瞬时加速度(3)理解导数概念实际背景,培养学生解决实际问题的能力,进一步掌握在一点处的导数的定义及其几何意义,培养学生转化问题的能力及数形结合思想一、复习引入1、什么叫做平均变化率;2、曲线上两点的连线(割线)的斜率与函数f(x)在区间[xA,xB]上的平均变化率3、如何精确地刻画曲线上某一点处的变化趋势呢?二、新课讲解1、曲线上一点处的切线斜率不妨设P(x1,f(x1)),Q(x0,f(x0)),则割线PQ的斜率为,设x1-x0=△x,则x1=△x
2、+x0,∴当点P沿着曲线向点Q无限靠近时,割线PQ的斜率就会无限逼近点Q处切线斜率,即当△x无限趋近于0时,无限趋近点Q处切线斜率。2、曲线上任一点(x0,f(x0))切线斜率的求法:,当△x无限趋近于0时,k值即为(x0,f(x0))处切线的斜率。3、瞬时速度与瞬时加速度(1)平均速度:物理学中,运动物体的位移与所用时间的比称为平均速度(2)位移的平均变化率:(3)瞬时速度:当无限趋近于0时,无限趋近于一个常数,这个常数称为t=t0时的瞬时速度求瞬时速度的步骤:1.先求时间改变量和位置改变量2.再求平均速度3.后求瞬时速度:当无限趋近于0,无限趋近于常数v为瞬时速度(
3、4)速度的平均变化率:(5)瞬时加速度:当无限趋近于0时,无限趋近于一个常数,这个常数称为t=t0时的瞬时加速度注:瞬时加速度是速度对于时间的瞬时变化率三、数学应用例1、已知f(x)=x2,求曲线在x=2处的切线的斜率。变式:1.求过点(1,1)的切线方程2.曲线y=x3在点P处切线斜率为k,当k=3时,P点的坐标为_________3.已知曲线上的一点P(0,0)的切线斜率是否存在?例2.一直线运动的物体,从时间到时,物体的位移为,那么为()A.从时间到时,物体的平均速度;B.在时刻时该物体的瞬时速度;C.当时间为时物体的速度;D.从时间到时物体的平均速度例3.自由落
4、体运动的位移s(m)与时间t(s)的关系为s=(1)求t=t0s时的瞬时速度(2)求t=3s时的瞬时速度(3)求t=3s时的瞬时加速度点评:求瞬时速度,也就转化为求极限,瞬时速度我们是通过在一段时间内的平均速度的极限来定义的,只要知道了物体的运动方程,代入公式就可以求出瞬时速度了.运用数学工具来解决物理方面的问题,是不是方便多了.所以数学是用来解决其他一些学科,比如物理、化学等方面问题的一种工具,我们这一节课学的内容以及上一节课学的是我们学习导数的一些实际背景导数与导函数的概念学习目标:1、知识与技能:理解导数的概念、掌握简单函数导数符号表示和求解方法;理解导数的几何意
5、义;理解导函数的概念和意义;2、过程与方法:先理解概念背景,培养解决问题的能力;再掌握定义和几何意义,培养转化问题的能力;最后求切线方程,培养转化问题的能力3、情感态度及价值观;让学生感受事物之间的联系,体会数学的美。的求解方法和过程;2、导数符号的灵活运用教学过程:一、情境引入在前面我们解决的问题:1、求函数在点(2,4)处的切线斜率。,故斜率为42、直线运动的汽车速度V与时间t的关系是,求时的瞬时速度。,故斜率为4二、知识点讲解上述两个函数和中,当()无限趋近于0时,()都无限趋近于一个常数。归纳:一般的,定义在区间(,)上的函数,,当无限趋近于0时,无限趋近于一个
6、固定的常数A,则称在处可导,并称A为在处的导数,记作或,上述两个问题中:(1),(2)三、几何意义:我们上述过程可以看出在处的导数就是在处的切线斜率。四、例题选讲例1、求下列函数在相应位置的导数(1),(2),(3),例2、函数满足,则当x无限趋近于0时,(1)(2)变式:设f(x)在x=x0处可导,(3)无限趋近于1,则=___________(4)无限趋近于1,则=________________(5)当△x无限趋近于0,所对应的常数与的关系。总结:导数等于纵坐标的增量与横坐标的增量之比的极限值。例3、若,求和注意分析两者之间的区别。例4:已知函数,求在处的切线。导
7、函数的概念涉及:的对于区间(,)上任意点处都可导,则在各点的导数也随x的变化而变化,因而也是自变量x的函数,该函数被称为的导函数,记作。常见函数的导数一、学习目标:掌握初等函数的求导公式;一、复习1、导数的定义;2、导数的几何意义;3、导函数的定义;4、求函数的导数的流程图。(1)求函数的改变量(2)求平均变化率(3)取极限,得导数=本节课我们将学习常见函数的导数。首先我们来求下面几个函数的导数。(1)、y=x(2)、y=x2(3)、y=x3问题:,,呢?问题:从对上面几个幂函数求导,我们能发现有什么规律吗?二、新授1、基本初等函数的求导
此文档下载收益归作者所有