高中物理竞赛讲义-静电场重要模型及专题

高中物理竞赛讲义-静电场重要模型及专题

ID:1507427

大小:555.00 KB

页数:11页

时间:2017-11-12

高中物理竞赛讲义-静电场重要模型及专题_第1页
高中物理竞赛讲义-静电场重要模型及专题_第2页
高中物理竞赛讲义-静电场重要模型及专题_第3页
高中物理竞赛讲义-静电场重要模型及专题_第4页
高中物理竞赛讲义-静电场重要模型及专题_第5页
资源描述:

《高中物理竞赛讲义-静电场重要模型及专题》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、静电场重要模型与专题一、场强和电场力【物理情形1】试证明:均匀带电球壳内部任意一点的场强均为零。【模型分析】这是一个叠加原理应用的基本事例。如图7-5所示,在球壳内取一点P,以P为顶点做两个对顶的、顶角很小的锥体,锥体与球面相交得到球面上的两个面元ΔS1和ΔS2,设球面的电荷面密度为σ,则这两个面元在P点激发的场强分别为ΔE1=kΔE2=k为了弄清ΔE1和ΔE2的大小关系,引进锥体顶部的立体角ΔΩ,显然=ΔΩ=所以ΔE1=k,ΔE2=k,即:ΔE1=ΔE2,而它们的方向是相反的,故在P点激发的合场强为零。同理,其它各个相对

2、的面元ΔS3和ΔS4、ΔS5和ΔS6…激发的合场强均为零。原命题得证。【模型变换】半径为R的均匀带电球面,电荷的面密度为σ,试求球心处的电场强度。【解析】如图7-6所示,在球面上的P处取一极小的面元ΔS,它在球心O点激发的场强大小为ΔE=k,方向由P指向O点。无穷多个这样的面元激发的场强大小和ΔS激发的完全相同,但方向各不相同,它们矢量合成的效果怎样呢?这里我们要大胆地预见——由于由于在x方向、y方向上的对称性,Σ=Σ=0,最后的ΣE=ΣEz,所以先求ΔEz=ΔEcosθ=k,而且ΔScosθ为面元在xoy平面的投影,设为

3、ΔS′所以ΣEz=ΣΔS′而ΣΔS′=πR2【答案】E=kπσ,方向垂直边界线所在的平面。〖学员思考〗如果这个半球面在yoz平面的两边均匀带有异种电荷,面密度仍为σ,那么,球心处的场强又是多少?〖推荐解法〗将半球面看成4个球面,每个球面在x、y、z三个方向上分量均为kπσ,能够对称抵消的将是y、z两个方向上的分量,因此ΣE=ΣEx…〖答案〗大小为kπσ,方向沿x轴方向(由带正电的一方指向带负电的一方)。【物理情形2】有一个均匀的带电球体,球心在O点,半径为R,电荷体密度为ρ,球体内有一个球形空腔,空腔球心在O′点,半径为R

4、′,=a,如图7-7所示,试求空腔中各点的场强。【模型分析】这里涉及两个知识的应用:一是均匀带电球体的场强定式(它也是来自叠加原理,这里具体用到的是球体内部的结论,即“剥皮法则”),二是填补法。将球体和空腔看成完整的带正电的大球和带负电(电荷体密度相等)的小球的集合,对于空腔中任意一点P,设=r1,=r2,则大球激发的场强为E1=k=kρπr1,方向由O指向P“小球”激发的场强为E2=k=kρπr2,方向由P指向O′E1和E2的矢量合成遵从平行四边形法则,ΣE的方向如图。又由于矢量三角形PE1ΣE和空间位置三角形OPO′是

5、相似的,ΣE的大小和方向就不难确定了。【答案】恒为kρπa,方向均沿O→O′,空腔里的电场是匀强电场。〖学员思考〗如果在模型2中的OO′连线上O′一侧距离O为b(b>R)的地方放一个电量为q的点电荷,它受到的电场力将为多大?〖解说〗上面解法的按部就班应用…〖答〗πkρq〔−〕。二、电势、电量与电场力的功【物理情形1】如图7-8所示,半径为R的圆环均匀带电,电荷线密度为λ,圆心在O点,过圆心跟环面垂直的轴线上有P点,=r,以无穷远为参考点,试求P点的电势UP。【模型分析】这是一个电势标量叠加的简单模型。先在圆环上取一个元段Δ

6、L,它在P点形成的电势ΔU=k环共有段,各段在P点形成的电势相同,而且它们是标量叠加。【答案】UP=〖思考〗如果上题中知道的是环的总电量Q,则UP的结论为多少?如果这个总电量的分布不是均匀的,结论会改变吗?〖答〗UP=;结论不会改变。〖再思考〗将环换成半径为R的薄球壳,总电量仍为Q,试问:(1)当电量均匀分布时,球心电势为多少?球内(包括表面)各点电势为多少?(2)当电量不均匀分布时,球心电势为多少?球内(包括表面)各点电势为多少?〖解说〗(1)球心电势的求解从略;球内任一点的求解参看图7-5ΔU1=k=k·=kσΔΩΔU

7、2=kσΔΩ它们代数叠加成ΔU=ΔU1+ΔU2=kσΔΩ而r1+r2=2Rcosα所以ΔU=2RkσΔΩ所有面元形成电势的叠加ΣU=2RkσΣΔΩ注意:一个完整球面的ΣΔΩ=4π(单位:球面度sr),但作为对顶的锥角,ΣΔΩ只能是2π,所以——ΣU=4πRkσ=k(2)球心电势的求解和〖思考〗相同;球内任一点的电势求解可以从(1)问的求解过程得到结论的反证。〖答〗(1)球心、球内任一点的电势均为k;(2)球心电势仍为k,但其它各点的电势将随电量的分布情况的不同而不同(内部不再是等势体,球面不再是等势面)。【相关应用】如图7

8、-9所示,球形导体空腔内、外壁的半径分别为R1和R2,带有净电量+q,现在其内部距球心为r的地方放一个电量为+Q的点电荷,试求球心处的电势。【解析】由于静电感应,球壳的内、外壁形成两个带电球壳。球心电势是两个球壳形成电势、点电荷形成电势的合效果。根据静电感应的尝试,内壁的电荷量为-Q,外壁的电荷量为+Q

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。