欢迎来到天天文库
浏览记录
ID:15029977
大小:83.50 KB
页数:10页
时间:2018-08-01
《高中数学公式大全(所有)》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、对数的性质及推导用^表示乘方,用log(a)(b)表示以a为底,b的对数*表示乘号,/表示除号定义式:若a^n=b(a>0且a≠1)则n=log(a)(b)基本性质:1.a^(log(a)(b))=b2.log(a)(MN)=log(a)(M)+log(a)(N);3.log(a)(M/N)=log(a)(M)-log(a)(N);4.log(a)(M^n)=nlog(a)(M)推导1.这个就不用推了吧,直接由定义式可得(把定义式中的[n=log(a)(b)]带入a^n=b)2.MN=M*N由基本性质1(换掉M和N)a^[log(a)(MN)]=a^[
2、log(a)(M)]*a^[log(a)(N)]由指数的性质a^[log(a)(MN)]=a^{[log(a)(M)]+[log(a)(N)]}又因为指数函数是单调函数,所以log(a)(MN)=log(a)(M)+log(a)(N)3.与2类似处理MN=M/N由基本性质1(换掉M和N)a^[log(a)(M/N)]=a^[log(a)(M)]/a^[log(a)(N)]由指数的性质a^[log(a)(M/N)]=a^{[log(a)(M)]-[log(a)(N)]}又因为指数函数是单调函数,所以log(a)(M/N)=log(a)(M)-log(a)
3、(N)4.与2类似处理M^n=M^n由基本性质1(换掉M)a^[log(a)(M^n)]={a^[log(a)(M)]}^n由指数的性质a^[log(a)(M^n)]=a^{[log(a)(M)]*n}又因为指数函数是单调函数,所以log(a)(M^n)=nlog(a)(M)其他性质:性质一:换底公式log(a)(N)=log(b)(N)/log(b)(a)推导如下N=a^[log(a)(N)]a=b^[log(b)(a)]综合两式可得N={b^[log(b)(a)]}^[log(a)(N)]=b^{[log(a)(N)]*[log(b)(a)]}又因
4、为N=b^[log(b)(N)]所以b^[log(b)(N)]=b^{[log(a)(N)]*[log(b)(a)]}所以log(b)(N)=[log(a)(N)]*[log(b)(a)]{这步不明白或有疑问看上面的}所以log(a)(N)=log(b)(N)/log(b)(a)性质二:(不知道什么名字)log(a^n)(b^m)=m/n*[log(a)(b)]推导如下由换底公式[lnx是log(e)(x),e称作自然对数的底]log(a^n)(b^m)=ln(a^n)/ln(b^n)由基本性质4可得log(a^n)(b^m)=[n*ln(a)]/[m
5、*ln(b)]=(m/n)*{[ln(a)]/[ln(b)]}再由换底公式log(a^n)(b^m)=m/n*[log(a)(b)]--------------------------------------------(性质及推导完)公式三:log(a)(b)=1/log(b)(a)证明如下:由换底公式log(a)(b)=log(b)(b)/log(b)(a)----取以b为底的对数,log(b)(b)=1=1/log(b)(a)还可变形得:log(a)(b)*log(b)(a)=1三角函数的和差化积公式sinα+sinβ=2sin(α+β)/2·c
6、os(α-β)/2sinα-sinβ=2cos(α+β)/2·sin(α-β)/2cosα+cosβ=2cos(α+β)/2·cos(α-β)/2cosα-cosβ=-2sin(α+β)/2·sin(α-β)/2三角函数的积化和差公式sinα·cosβ=1/2[sin(α+β)+sin(α-β)]cosα·sinβ=1/2[sin(α+β)-sin(α-β)]cosα·cosβ=1/2[cos(α+β)+cos(α-β)]sinα·sinβ=-1/2[cos(α+β)-cos(α-β乘法与因式分解a^2-b^2=(a+b)(a-b)a^3+b^3=(a
7、+b)(a^2-ab+b^2)a^3-b^3=(a-b(a^2+ab+b^2)三角不等式
8、a+b
9、≤
10、a
11、+
12、b
13、
14、a-b
15、≤
16、a
17、+
18、b
19、
20、a
21、≤b<=>-b≤a≤b
22、a-b
23、≥
24、a
25、-
26、b
27、-
28、a
29、≤a≤
30、a
31、一元二次方程的解-b+√(b^2-4ac)/2a-b-√(b^2-4ac)/2a根与系数的关系X1+X2=-b/aX1*X2=c/a注:韦达定理判别式b^2-4ac=0注:方程有两个相等的实根b^2-4ac>0注:方程有两个不等的实根b^2-4ac<0注:方程没有实根,有共轭复数根三角函数公式两角和公式sin(A+B)=sinAcosB+c
32、osAsinBsin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosA
此文档下载收益归作者所有