欢迎来到天天文库
浏览记录
ID:14809009
大小:169.50 KB
页数:21页
时间:2018-07-30
《本册综合能力测试》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、本册综合能力测试本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。满分150分。考试时间120分钟。第Ⅰ卷(选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.(2013·泰安期末)tanπ的值为( )A. B.- C. D.-[答案] D[解析] tanπ=tan(2π+π)=tanπ=-.2.(2013·辽宁理)已知点A(1,3),B(4,-1),则与向量同方向的单位向量为( )A.(,-)B.(,-)C.(-,)D.(-,)[答
2、案] A[解析] 本题考查平面向量的坐标运算,单位向量的求法.因为=(3,-4),
3、
4、=5,所以与向量同向的单位向量为==(,-),选A.3.(2013·诸城月考)集合{x
5、kπ+≤α≤kπ+,k∈Z}中的角所表示的范围(阴影部分)是( )[答案] C[解析] 当k=2n时,2nπ+≤α≤2nπ+,此时α的终边和≤α≤的终边一样.当k=2n+1时,2nπ+π+≤α≤2nπ+π+,此时α的终边和π+≤α≤π+的终边一样.4.已知扇形的周长为8cm,圆心角为2弧度,则该扇形的面积为( )A.4cm2B.6cm2C.8cm2D
6、.16cm2[答案] A[解析] 由题意得解得所以S=lr=4(cm2).5.已知α是锐角,a=(,sinα),b=(cosα,),且a∥b,则α为( )A.15°B.45°C.75°D.15°或75°[答案] D[解析] ∵a∥b,∴sinα·cosα=×,即sin2α=又∵α为锐角,∴0°<2α<180°.∴2α=30°或2α=150°即α=15°或α=75°.6.若sinα=,α∈,则tan2α的值为( )A.B.C.-D.-[答案] B[解析] ∵sinα=,α∈,∴cosα=-.∴tanα=-.∴tan2α==
7、.7.(2013烟台模拟)已知cosα=,cos(α+β)=-,α,β都是锐角,则cosβ=( )A.-B.-C.D.[答案] C[解析] ∵α、β是锐角,∴0<α+β<π,又cos(α+β)=-<0∴<α+β<π,∴sin(α+β)=sinα=,又cosβ=cos(α+β-β)=cos(α+β)cosα+sin(α+β)sinα=-×+×=.8.函数y=sinx(≤x≤)的值域是( )A.[-1,1]B.[,1]C.[,]D.[,1][答案] B[解析] 可以借助单位圆或函数的图象求解.9.要得到函数y=3sin(2x
8、+)的图象,只需将函数y=3sin2x的图象( )A.向左平移个单位B.向右平移个单位C.向左平移个单位D.向右平移个单位[答案] C10.已知a=(1,-1),b=(x+1,x),且a与b的夹角为45°,则x的值为( )A.0B.-1C.0或-1D.-1或1[答案] C[解析] 由夹角公式:cos45°==,即x2+x=0,解得x=0或x=-1.11.(2012·全国高考江西卷)若=,则tan2α=( )A.-B.C.-D.[答案] B[解析] 主要考查三角函数的运算,分子分母同时除以cosα可得tanα=-3,带入
9、所求式可得结果.12.设a=sin17°cos45°+cos17°sin45°,b=2cos213°-1,c=,则有( )A.ca>c.第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.若tanα=3,则sinαcosα的值等于________.[答案] [解析] sinαcosα====.14.已知:
10、a
11、=2,
12、
13、b
14、=,a与b的夹角为,要λb-a与a垂直,则λ为________.[答案] 2[解析] 由题意a·(λb-a)=0,即λa·b-
15、a
16、2=0,∴λ·2××-4=0,即λ=2.15.(2013南通调研)设α、β∈(0,π),且sin(α+β)=,tan=,则cosβ的值为________.[答案] -[解析] 由tan=得sinα===cosα=由sin(α+β)=17、6.(2013山东师大附中模拟)已知△ABC中,AC=4,AB=2,若G为△ABC的重心,则·=________.[答案] 4[解析] 设BC的中点为D,∵G为△ABC的重心,∴==×(+)=(+)=-∴·=·=-(+)·(-)=-(2-2)=-×(22-42)=4三、解答题(本大题共6个
17、6.(2013山东师大附中模拟)已知△ABC中,AC=4,AB=2,若G为△ABC的重心,则·=________.[答案] 4[解析] 设BC的中点为D,∵G为△ABC的重心,∴==×(+)=(+)=-∴·=·=-(+)·(-)=-(2-2)=-×(22-42)=4三、解答题(本大题共6个
此文档下载收益归作者所有