反比例函数的意义

反比例函数的意义

ID:14521340

大小:445.50 KB

页数:135页

时间:2018-07-29

反比例函数的意义_第1页
反比例函数的意义_第2页
反比例函数的意义_第3页
反比例函数的意义_第4页
反比例函数的意义_第5页
资源描述:

《反比例函数的意义》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、第十七章反比例函数课题17.1.1反比例函数的意义课时:一课时【学习目标】1.理解并掌握反比例函数的概念。2.会判断一个给定函数是否为反比例函数。3.会根据已知条件用待定系数法求反比例函数的解析式。【重点难点】重点:理解反比例函数的意义,确定反比例函数的表达式。难点:反比例函数的意义。【导学指导】复习旧知:1.什么是常量?什么是变量?函数是如何定义的?2.我们学过哪几种函数?每一种函数形式怎样?1.写出下列问题中的函数关系式并说明是什么函数.(1)梯形的上底长是2,下底长是4,一腰长是6,则梯形的周长y与另一腰长x之间的函数关系式。(

2、2)某种文具单价为3元,当购买m个这种文具时,共花了y元,则y与m的关系式。学习新知:阅读教材P39-P40相关内容,思考,讨论,合作交流完成下列问题。1.什么是反比例函数?反比例函数的自变量可以取一切实数吗?为什么?2.仔细观察反比例函数的解析式y=k/x,我们还可以把它写成什么形式?3.回忆我们学过的一次函数和正比例函数,我们是用什么方法求它们的解析式的?以此类推,我们也可以采用同样的方法来求反比例函数的解析式。【课堂练习】1.下列等式中y是x的反比例函数的是()①y=4x②y/x=3③y=6x-1④xy=12⑤y=5/x+2⑥y

3、=x/2⑦y=-√2/x⑧y=-3/2x1.已知y是x的反比例函数,当x=3时,y=7,(1)写出y与x的函数关系式;(2)当x=7时,y等于多少?【要点归纳】通过今天的学习,你有哪些收获?与同伴交流一下。【拓展训练】1.函数y=(m-4)x3-

4、m

5、是反比例函数,则m的值是多少?2.若反比例函数y=k/x与一次函数y=2x-4的图象都过点A(m,2)(1)求A点的坐标;(2)求反比例函数的解析式。课题:17.1.2反比例函数的图象和性质课时:二课时第一课时反比例函数的图象和性质的认识【学习目标】1.体会并了解反比例函数图象的意义。1

6、.能用描点的方法画出反比例函数的图象。2.通过对反比例函数的图象的分析,探索并掌握反比例函数的图象的性质。【重点难点】重点:画反比例函数的图象;探索并掌握反比例函数的主要性质。难点:画反比例函数的图象;理解反比例函数的性质,并能初步运用。【导学指导】复习旧知:1.根据上节课的学习,说说反比例函数的意义和如何用待定系数法求反比例函数的解析式。2.用描点法画函数图象的步骤是什么?2.我们研究一次函数y=kx+b(k,b为常数,k≠0)的图象是什么?性质有哪些?正比例函数呢?学习新知:1.在同一个平面直角坐标系中用不同颜色的笔画出反比例函数

7、y=6/x和y=-6/x的图象。并思考,(1)从以上作图中,发现y=6/x和y=-6/x的图象是什么?(2)y=6/x和y=-6/x的图象分别在第几象限?(3)在每一个象限y随x是如何变化的?(4)y=6/x和y=-6/x的图象之间的关系?2.请同学们自己给k赋值,再画一组反比例函数的图象,看看是不是反比例函数y=k/x(k为常数,k≠0)的图象都有类似的性质?思考:影响反比例函数的图象的因素主要是什么?图象和坐标轴是否有交点?【课堂练习】1.教材P43-P44练习第1,2题。2.已知反比例函数y=4-k/x,分别根据下列条件求k的取

8、值范围。(1)函数图象位于第一、三象限;(2)函数图象的一个分支向左上方延伸。【要点归纳】通过今天的学习,你有什么收获?与同伴交流一下。【拓展训练】1.已知反比例函数y=(2-a)x

9、a

10、-3中,y随x的增大而减小,则a=.2.反比例函数y=m/x的图象的两个分支在第二、四象限,则点(m,m-2)在第象限。3.如图是三个反比例函数y=k/x,y=k/x,y=k/x,在x轴上方的图象,由此观察得到k1,k2,k3的大小关系是。第二课时反比例函数的图象和性质的应用【学习目标】1.进一步理解和掌握反比例函数的图及其性质。2.结合函数图象,能

11、利用待定系数法求函数关系式,并能比较大小。3.能灵活运用函数图象和性质解决一些较综合的问题。【重点难点】重点:灵活运用反比例函数的性质。难点:利用数形结合的思想比较大小及求函数关系式。【导学指导】复习旧知:1.反比例函数y=-2/x的图象在第象限,在每个象限中y随x的增大而。2.已知反比例函数y=m/x的图象位于一、三象限,则m的取值范围是。3.已知点(-3,1)在双曲线y=k/x上,则k=.4.面积为4的三角形ABC,一边长为x,设这条边上的高为y,则y与x的变化规律用图象表示大致为()5.已知y是x的反比例函数,当x=3时,y=-

12、2,(1)写出y与x的函数关系式;(2)求当x=-2时y的值;(3)求当y=4时x的值。学习新知:1.已知反比例函数的图象经过点A(2,6),(1)这个函数的图象分布在哪些象限?y随x的增大如何变化?(2)点B(3,4)

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。