欢迎来到天天文库
浏览记录
ID:14506932
大小:1.41 MB
页数:27页
时间:2018-07-29
《2010中考数学试题分类汇编-压轴题1》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、为您服务教育网 http://www.wsbedu.com/2010年中考数学试题分类汇编压轴题(一)24.(2010广东广州,24,14分)如图,⊙O的半径为1,点P是⊙O上一点,弦AB垂直平分线段OP,点D是上任一点(与端点A、B不重合),DE⊥AB于点E,以点D为圆心、DE长为半径作⊙D,分别过点A、B作⊙D的切线,两条切线相交于点C.(1)求弦AB的长;(2)判断∠ACB是否为定值,若是,求出∠ACB的大小;否则,请说明理由;(3)记△ABC的面积为S,若=4,求△ABC的周长.CPDOBAE【分析】(1)连接OA,OP与AB的交点为F,则△OAF
2、为直角三角形,且OA=1,OF=,借助勾股定理可求得AF的长;FCPDOBAEHG(2)要判断∠ACB是否为定值,只需判定∠CAB+∠ABC的值是否是定值,由于⊙D是△ABC的内切圆,所以AD和BD分别为∠CAB和∠ABC的角平分线,因此只要∠DAE+∠DBA是定值,那么CAB+∠ABC就是定值,而∠DAE+∠DBA等于弧AB所对的圆周角,这个值等于∠AOB值的一半;(3)由题可知=DE(AB+AC+BC),又因为,所以,所以AB+AC+BC=,由于DH=DG=DE,所以在Rt△CDH中,CH=DH=DE,同理可得CG=DE,又由于AG=AE,BE=27为
3、您服务教育网 http://www.wsbedu.com/BH,所以AB+AC+BC=CG+CH+AG+AB+BH=DE+,可得=DE+,解得:DE=,代入AB+AC+BC=,即可求得周长为.【答案】解:(1)连接OA,取OP与AB的交点为F,则有OA=1.FCPDOBAEHG∵弦AB垂直平分线段OP,∴OF=OP=,AF=BF.在Rt△OAF中,∵AF===,∴AB=2AF=.(2)∠ACB是定值.理由:由(1)易知,∠AOB=120°,因为点D为△ABC的内心,所以,连结AD、BD,则∠CAB=2∠DAE,∠CBA=2∠DBA,因为∠DAE+∠DBA=
4、∠AOB=60°,所以∠CAB+∠CBA=120°,所以∠ACB=60°;(3)记△ABC的周长为l,取AC,BC与⊙D的切点分别为G,H,连接DG,DC,DH,则有DG=DH=DE,DG⊥AC,DH⊥BC.∴=AB•DE+BC•DH+AC•DG=(AB+BC+AC)•DE=l•DE.∵=4,∴=4,∴l=8DE.∵CG,CH是⊙D的切线,∴∠GCD=∠ACB=30°,∴在Rt△CGD中,CG===DE,∴CH=CG=DE.又由切线长定理可知AG=AE,BH=BE,∴l=AB+BC+AC=2+2DE=8DE,解得DE=,∴△ABC的周长为.【涉及知识点】垂
5、径定理勾股定理内切圆切线长定理三角形面积27为您服务教育网 http://www.wsbedu.com/【点评】本题巧妙将垂径定理、勾股定理、内切圆、切线长定理、三角形面积等知识综合在一起,需要考生从前往后按顺序解题,前面问题为后面问题的解决提供思路,是一道难度较大的综合题25.(2010广东广州,25,14分)如图所示,四边形OABC是矩形,点A、C的坐标分别为(3,0),(0,1),点D是线段BC上的动点(与端点B、C不重合),过点D作直线=-+交折线OAB于点E.(1)记△ODE的面积为S,求S与的函数关系式;(2)当点E在线段OA上时,若矩形OAB
6、C关于直线DE的对称图形为四边形OA1B1C1,试探究OA1B1C1与矩形OABC的重叠部分的面积是否发生变化,若不变,求出该重叠部分的面积;若改变,请说明理由.CDBAEO【分析】(1)要表示出△ODE的面积,要分两种情况讨论,①如果点E在OA边上,只需求出这个三角形的底边OE长(E点横坐标)和高(D点纵坐标),代入三角形面积公式即可;②如果点E在AB边上,这时△ODE的面积可用长方形OABC的面积减去△OCD、△OAE、△BDE的面积;(2)重叠部分是一个平行四边形,由于这个平行四边形上下边上的高不变,因此决定重叠部分面积是否变化的因素就是看这个平行四
7、边形落在OA边上的线段长度是否变化.【答案】(1)由题意得B(3,1).若直线经过点A(3,0)时,则b=若直线经过点B(3,1)时,则b=若直线经过点C(0,1)时,则b=1①若直线与折线OAB的交点在OA上时,即1<b≤,如图25-a,图1此时E(2b,0)27为您服务教育网 http://www.wsbedu.com/∴S=OE·CO=×2b×1=b②若直线与折线OAB的交点在BA上时,即<b<,如图2图2此时E(3,),D(2b-2,1)∴S=S矩-(S△OCD+S△OAE+S△DBE)=3-[(2b-1)×1+×(5-2b)·()+×3()]=∴
8、(2)如图3,设O1A1与CB相交于点M,OA与C1B1相交于点N
此文档下载收益归作者所有