欢迎来到天天文库
浏览记录
ID:14446546
大小:46.50 KB
页数:2页
时间:2018-07-28
《第十一章 全等三角形总结》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、第十一章全等三角形总结一、基础填空。1、全等形:能够完全的两个图形叫做全等形。2、全等三角形:能够完全的两个三角形叫做全等三角形,用符号记做的顶点叫做对应点,重合的边叫,重合的角叫。3、全等三角形的相等,对应角。4、经过平移、翻折、旋转后的图形与原图形。5、全等三角形的判定:(简写)6、角平分线上的点到角两边的相等。7、角的内部到角的两边的相等的点在角平分线上,到三角形三条边的距离都相等的点是这个三角形的。二、例题。1、如图1-1,△AOB≌△DOC,点A与点D是对应点,求证AB∥DC。2、已知AC、BD相交于O点,且AB=DC,AC=DB,试研究∠A与∠D的大小关
2、系,并说明理由。3、如图1-2,∠ACB=90°,AM⊥MN,BN⊥MN,AC=BC.试说明:MN=AM+BN.4、如图1-3,△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB于E,F在AC上,BD=DF,求证:CF=EB。5、两组临边相等的四边形我们称为筝形。如图1-4,在筝形ABCD中,AB=AD,BC=DC,AC、BD相交于点O。求证:①△ABC≌△ADC;②OB=OD,AC⊥BD;③如果AC=6,BD=4,求筝形ABCD的面积。6、如图1-5,△ABC中,D是BC的中点,过点D的直线GF交AC于点F,交AC的平行线BG于点G,DE⊥GF交AB于点
3、E,连接EG。①求证:BG=CF;②请你判断BE+CF与EF的大小关系,并证明你的结论。
此文档下载收益归作者所有