一元微积分,多元微积分,高等数学复习提纲(同济大学版)

一元微积分,多元微积分,高等数学复习提纲(同济大学版)

ID:14409265

大小:56.50 KB

页数:8页

时间:2018-07-28

一元微积分,多元微积分,高等数学复习提纲(同济大学版)_第1页
一元微积分,多元微积分,高等数学复习提纲(同济大学版)_第2页
一元微积分,多元微积分,高等数学复习提纲(同济大学版)_第3页
一元微积分,多元微积分,高等数学复习提纲(同济大学版)_第4页
一元微积分,多元微积分,高等数学复习提纲(同济大学版)_第5页
资源描述:

《一元微积分,多元微积分,高等数学复习提纲(同济大学版)》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、第一章(1)1,补集的记号2,什么是笛卡尔乘积3,什么是邻域,记号,中心,半径4,去心邻域,记号,左邻域,右邻域5,两个闭区间的直积6,映射的概念,原像,满射,单射,一一映射7,泛函,变换,函数8,逆映射,复合映射9,多值函数,单值分支10,绝对值,符号函数,取整函数,最值函数11,上界、下界,有界,无界的定义12,奇偶性、周期性13,初等函数,基本初等函数(2)1,数列极限的定义,用符号语言2,收敛数列的四个性质3(3)1,函数在某点的极限定义,符号语言2,函数在无穷大处的极限,符号语言3,函数极限的性质(4)1,无穷小的定义2,函数极限的充分必

2、要条件,用无穷小表示3,无穷大4,无穷大和无穷小的定义(5)1,有限个无穷小的和2,有界函数与无穷小的乘积3,极限的四则运算4,函数y1始终大于y2,那么极限的关系是(6)1,极限存在的夹逼准则2,单调有界的数列是否存在极限3,(1+1/x)^x的极限4,柯西审敛准则(7)1,什么是高阶无穷小,低阶无穷小,同阶无穷小,k阶无穷小,等价无穷小2,等价无穷小的充要条件3,两组等价无穷小之间的比例关系(8)1,函数连续性的定义,左连续,右连续2,什么是连续函数3,间断点的三种情况4,第一类间断点,第二类间断点,可去间断点,条约间断点,无穷间断点,振荡间断

3、点(9)1,连续函数的四则运算后的连续性2,反函数和复合函数的连续性3,初等函数的连续性(10)1,有界性与最大最小值定理2,零点定理3,介值定理和推论第二章(1)1,导数的定义2,函数在一点可导的充要条件,用等式表示3,可导和连续的关系(2)1,函数的和差积商如何求导2,tanx、secx的导数,cscx和cotx3,反函数的求导法则是什么4,arcsinx的导数,arccos的导数,arctanx,areccotx的导数5,复合函数求导法则(3)1,二阶导数的微分表示法2,莱布尼兹公式3,a^xsinkxcoskxx^alnx1/x

4、的n阶导4,隐函数的求导5,对数求导法的应用6,参数所表示的函数怎样求导7,什么是相关变化率(5)1,可微的充分必要条件2,⊿y与dy的关系3,什么是线性主部4,什么是函数的微分,什么是自变量的微分5,函数的和差积商的微分6,复合函数的微分法则是什么、7,如何利用微分进行近似计算8,利用0点处的微分可以导出什么近似计算公式9,误差估计(星号)第三章(1)1,什么是费马引理2,什么是罗尔定理3,什么是拉格朗日中值定理4,什是有限增量公式5,什么是柯西中值定理(2)1,什么是罗比达法则(3)1,什么泰勒中值定理2,什么是泰勒多项式,什么是拉格朗日余型3

5、,什么是皮亚诺余型4,什么是迈克劳林公式5,e^xsinxcosxln(1+x)(1+x)^a的带有拉格朗日余项的麦克莱林公式(4)1,凹凸性的定义,导数如何判定凹凸性2,什么是拐点以及如何寻找拐点(5)1,极大值的定义2,什么是驻点,怎样利用导数判断极大值极小值3,如何利用二阶导数判断极大值极小值4,怎样判断最大值,最小值(6)函数图形描绘的步骤(7)1,弧微分公式2,什么是弧段的平均曲率,什么是曲率3,曲率的公式4,参数方程的曲率公式5,什么是曲率圆,曲率中心,曲率半径(8)1,什么是二分法2,什么是切线法第四章(1)1,什么是原函数2

6、,原函数存在定理3,什么事不定积分4,1/x1/(1+x^2)1/sqr(1-x^2)cosxsinx1/cosx^21/sinx^2secxtanxcscxcotxe^xa^x的原函数5,什么是第一类换元法6,cscx、secx的不定积分7,cos3x*cos2x的不定积分8,什么是第二类换元法9,tanxcotxsecxcscx1/(a^2+x^2)1/(x^2-a^2)1/sqr(a^2-x^2)1/sqr(x^2+a^2)1/sqr(x^2-a^2)积分10,什么是分部积分法11,分部积分法,分部积分法的

7、优先法则12,有理函数的积分怎样积,带根号的函数怎样积分(根号中x的次数是1)(5)积分表第五章(1)1,定积分的定义2,可积的2个充分条件是什么3,怎样利用积分的定义求定积分4,怎样利用定积分进行近似计算5,积分外面的绝对值和积分里面的绝对值之间的大小关系6,定积分与被积函数最大值最小值之间的关系7,什么是积分中值公式8,积分上限函数可导的充分条件,导数是9,什么是牛顿莱布尼兹公式10,定积分的换元法有什么条件,怎样换12,sinx^n从0积分到pi/2的结果13,什么是反常积分14,正负无穷的反常积分是怎样定义的15,如何利用牛顿莱布尼兹公式判

8、定反常积分是存在还是发散16,瑕积分的定义,存在和发散的一般规则17,反常积分的比较审敛法13,绝对收敛的反常积分14,Γ

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。