资源描述:
《实验三 线性系统的根轨迹》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、实验三线性系统的根轨迹一、实验目的1.熟悉MATLAB用于控制系统中的一些基本编程语句和格式。2.利用MATLAB语句绘制系统的根轨迹。3.掌握用根轨迹分析系统性能的图解方法。4.掌握系统参数变化对特征根位置的影响。二、基础知识及MATLAB函数根轨迹是指系统的某一参数从零变到无穷大时,特征方程的根在s平面上的变化轨迹。这个参数一般选为开环系统的增益K。课本中介绍的手工绘制根轨迹的方法,只能绘制根轨迹草图。而用MATLAB可以方便地绘制精确的根轨迹图,并可观测参数变化对特征根位置的影响。假设系统的对象模型可以表示为系统的闭环特征方程可以写成对每一个K的取值,我们可
2、以得到一组系统的闭环极点。如果我们改变K的数值,则可以得到一系列这样的极点集合。若将这些K的取值下得出的极点位置按照各个分支连接起来,则可以得到一些描述系统闭环位置的曲线,这些曲线又称为系统的根轨迹。绘制系统的根轨迹rlocus()MATLAB中绘制根轨迹的函数调用格式为:rlocus(num,den)开环增益k的范围自动设定。rlocus(num,den,k)开环增益k的范围人工设定。rlocus(p,z)依据开环零极点绘制根轨迹。r=rlocus(num,den)不作图,返回闭环根矩阵。[r,k]=rlocus(num,den)不作图,返回闭环根矩阵r和对应的
3、开环增益向量k。其中,num,den分别为系统开环传递函数的分子、分母多项式系数,按s的降幂排列。K为根轨迹增益,可设定增益范围。例3-1:已知系统的开环传递函数,绘制系统的根轨迹的matlab的调用语句如下:num=[11];%定义分子多项式den=[1429];%定义分母多项式rlocus(num,den)%绘制系统的根轨迹grid%画网格标度线xlabel(‘RealAxis’);ylabel(‘ImaginaryAxis’);%给坐标轴加上说明title(‘RootLocus’)%给图形加上标题名则该系统的根轨迹如图3-1(a)所示。若上例要绘制K在(1,
4、10)的根轨迹图,则此时的matlab的调用格式如下,对应的根轨迹如图3-1(b)所示。num=[11];den=[1429];k=1:0.5:10;rlocus(num,den,k)(a)完整根轨迹图形(b)特定增益范围内的根轨迹图形图3-1系统的根轨迹图形1)确定闭环根位置对应增益值K的函数rlocfind()在MATLAB中,提供了rlocfind函数获取与特定的复根对应的增益K的值。在求出的根轨迹图上,可确定选定点的增益值K和闭环根r(向量)的值。该函数的调用格式为:[k,r]=rlocfind(num,den)执行前,先执行绘制根轨迹命令rlocus(n
5、um,den),作出根轨迹图。执行rlocfind命令时,出现提示语句“Selectapointinthegraphicswindow”,即要求在根轨迹图上选定闭环极点。将鼠标移至根轨迹图选定的位置,单击左键确定,根轨迹图上出现“+”标记,即得到了该点的增益K和闭环根r的返回变量值。例3-2:系统的开环传递函数为,试求:(1)系统的根轨迹;(2)系统稳定的K的范围;(3)K=1时闭环系统阶跃响应曲线。则此时的matlab的调用格式为:G=tf([1,5,6],[1,8,3,25]);rlocus(G);%绘制系统的根轨迹[k,r]=rlocfind(G)%确定临界
6、稳定时的增益值k和对应的极点rG_c=feedback(G,1);%形成单位负反馈闭环系统step(G_c)%绘制闭环系统的阶跃响应曲线则系统的根轨迹图和闭环系统阶跃响应曲线如图3-2所示。其中,调用rlocfind()函数,求出系统与虚轴交点的K值,可得与虚轴交点的K值为0.0264,故系统稳定的K的范围为。2)绘制阻尼比和无阻尼自然频率的栅格线sgrid()当对系统的阻尼比和无阻尼自然频率有要求时,就希望在根轨迹图上作等或等线。matlab中实现这一要求的函数为sgrid(),该函数的调用格式为:sgrid(,)已知和的数值,作出等于已知参数的等值线。sgri
7、d(‘new’)作出等间隔分布的等和网格线。例3-3:系统的开环传递函数为,由rlocfind函数找出能产生主导极点阻尼=0.707的合适增益,如图3-3(a)所示。G=tf(1,[conv([1,1],[1,2]),0]);zet=[0.1:0.2:1];wn=[1:10];sgrid(zet,wn);holdon;rlocus(G)[k,r]=rlocfind(G)Selectapointinthegraphicswindowselected_point=-0.3791+0.3602ik=0.6233r=-2.2279-0.3861+0.3616i-0.386
8、1-0.3